Consider a $6 \times 6$ grid. Define a diagonal to be the six squares whose coordinates $(i,j)$ ($1 \le i,j \le 6)$ satisfy $i-j \equiv k \pmod 6$ for some $k=0,1,\dots,5$. Hence there are six diagonals. Determine if it is possible to fill it with the numbers $1,2,\dots,36$ (each exactly once) such that each row, each column, and each of the six diagonals has the same sum.
2014 Taiwan TST Round 3
110 minutes - Quiz 1
Alice and Bob play the following game. They alternate selecting distinct nonzero digits (from $1$ to $9$) until they have chosen seven such digits, and then consider the resulting seven-digit number by concatenating the digits in the order selected, with the seventh digit appearing last (i.e. $\overline{A_1B_2A_3B_4A_6B_6A_7}$). Alice wins if and only if the resulting number is the last seven decimal digits of some perfect seventh power. Please determine which player has the winning strategy.
110 minutes - Quiz 2
In convex hexagon $ABCDEF$, $AB \parallel DE$, $BC \parallel EF$, $CD \parallel FA$, and \[ AB+DE = BC+EF = CD+FA. \] The midpoints of sides $AB$, $BC$, $DE$, $EF$ are $A_1$, $B_1$, $D_1$, $E_1$, and segments $A_1D_1$ and $B_1E_1$ meet at $O$. Prove that $\angle D_1OE_1 = \frac12 \angle DEF$.
Let $m \neq 0 $ be an integer. Find all polynomials $P(x) $ with real coefficients such that \[ (x^3 - mx^2 +1 ) P(x+1) + (x^3+mx^2+1) P(x-1) =2(x^3 - mx +1 ) P(x) \] for all real number $x$.
110 minutes - Quiz 3
Positive integers $x_1, x_2, \dots, x_n$ ($n \ge 4$) are arranged in a circle such that each $x_i$ divides the sum of the neighbors; that is \[ \frac{x_{i-1}+x_{i+1}}{x_i} = k_i \] is an integer for each $i$, where $x_0 = x_n$, $x_{n+1} = x_1$. Prove that \[ 2n \le k_1 + k_2 + \dots + k_n < 3n. \]
In a triangle $ABC$, let $D$ and $E$ be the feet of the angle bisectors of angles $A$ and $B$, respectively. A rhombus is inscribed into the quadrilateral $AEDB$ (all vertices of the rhombus lie on different sides of $AEDB$). Let $\varphi$ be the non-obtuse angle of the rhombus. Prove that $\varphi \le \max \{ \angle BAC, \angle ABC \}$.
Team Selection Test - Day 1
Let $\mathbb R$ be the real numbers. Set $S = \{1, -1\}$ and define a function $\operatorname{sign} : \mathbb R \to S$ by \[ \operatorname{sign} (x) = \begin{cases} 1 & \text{if } x \ge 0; \\ -1 & \text{if } x < 0. \end{cases} \] Fix an odd integer $n$. Determine whether one can find $n^2+n$ real numbers $a_{ij}, b_i \in S$ (here $1 \le i, j \le n$) with the following property: Suppose we take any choice of $x_1, x_2, \dots, x_n \in S$ and consider the values \begin{align*} y_i &= \operatorname{sign} \left( \sum_{j=1}^n a_{ij} x_j \right), \quad \forall 1 \le i \le n; \\ z &= \operatorname{sign} \left( \sum_{i=1}^n y_i b_i \right) \end{align*} Then $z=x_1 x_2 \dots x_n$.
Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.
Let $M$ be any point on the circumcircle of triangle $ABC$. Suppose the tangents from $M$ to the incircle meet $BC$ at two points $X_1$ and $X_2$. Prove that the circumcircle of triangle $MX_1X_2$ intersects the circumcircle of $ABC$ again at the tangency point of the $A$-mixtilinear incircle.
Team Selection Test - Day 2
Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.
Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \]and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \]prove that \[a_1 + \dots +a_n \le n^2. \]
Players $A$ and $B$ play a "paintful" game on the real line. Player $A$ has a pot of paint with four units of black ink. A quantity $p$ of this ink suffices to blacken a (closed) real interval of length $p$. In every round, player $A$ picks some positive integer $m$ and provides $1/2^m $ units of ink from the pot. Player $B$ then picks an integer $k$ and blackens the interval from $k/2^m$ to $(k+1)/2^m$ (some parts of this interval may have been blackened before). The goal of player $A$ is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened. Decide whether there exists a strategy for player $A$ to win in a finite number of moves.