Determine all sequences of real numbers $a_1$, $a_2$, $\ldots$, $a_{1995}$ which satisfy: \[ 2\sqrt{a_n - (n - 1)} \geq a_{n+1} - (n - 1), \ \mbox{for} \ n = 1, 2, \ldots 1994, \] and \[ 2\sqrt{a_{1995} - 1994} \geq a_1 + 1. \]
1995 APMO
Let $a_1$, $a_2$, $\ldots$, $a_n$ be a sequence of integers with values between 2 and 1995 such that: (i) Any two of the $a_i$'s are relatively prime, (ii) Each $a_i$ is either a prime or a product of primes. Determine the smallest possible values of $n$ to make sure that the sequence will contain a prime number.
Let $PQRS$ be a cyclic quadrilateral such that the segments $PQ$ and $RS$ are not parallel. Consider the set of circles through $P$ and $Q$, and the set of circles through $R$ and $S$. Determine the set $A$ of points of tangency of circles in these two sets.
Let $C$ be a circle with radius $R$ and centre $O$, and $S$ a fixed point in the interior of $C$. Let $AA'$ and $BB'$ be perpendicular chords through $S$. Consider the rectangles $SAMB$, $SBN'A'$, $SA'M'B'$, and $SB'NA$. Find the set of all points $M$, $N'$, $M'$, and $N$ when $A$ moves around the whole circle.
Find the minimum positive integer $k$ such that there exists a function $f$ from the set $\Bbb{Z}$ of all integers to $\{1, 2, \ldots k\}$ with the property that $f(x) \neq f(y)$ whenever $|x-y| \in \{5, 7, 12\}$.