1991 APMO

1

Let $G$ be the centroid of a triangle $ABC$, and $M$ be the midpoint of $BC$. Let $X$ be on $AB$ and $Y$ on $AC$ such that the points $X$, $Y$, and $G$ are collinear and $XY$ and $BC$ are parallel. Suppose that $XC$ and $GB$ intersect at $Q$ and $YB$ and $GC$ intersect at $P$. Show that triangle $MPQ$ is similar to triangle $ABC$.

2

Suppose there are $997$ points given in a plane. If every two points are joined by a line segment with its midpoint coloured in red, show that there are at least $1991$ red points in the plane. Can you find a special case with exactly $1991$ red points?

3

Let $a_1$, $a_2$, $\cdots$, $a_n$, $b_1$, $b_2$, $\cdots$, $b_n$ be positive real numbers such that $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$. Show that \[ \frac{a_1^2}{a_1 + b_1} + \frac{a_2^2}{a_2 + b_2} + \cdots + \frac{a_n^2}{a_n + b_n} \geq \frac{a_1 + a_2 + \cdots + a_n}{2} \]

4

During a break, $n$ children at school sit in a circle around their teacher to play a game. The teacher walks clockwise close to the children and hands out candies to some of them according to the following rule: He selects one child and gives him a candy, then he skips the next child and gives a candy to the next one, then he skips 2 and gives a candy to the next one, then he skips 3, and so on. Determine the values of $n$ for which eventually, perhaps after many rounds, all children will have at least one candy each.

5

Given are two tangent circles and a point $P$ on their common tangent perpendicular to the lines joining their centres. Construct with ruler and compass all the circles that are tangent to these two circles and pass through the point $P$.