Let $x = \left( 1 + \frac{1}{n}\right)^n$ and $y = \left( 1 + \frac{1}{n}\right)^{n+1}$ where $n \in \mathbb{N}$. Which one of the numbers $x^y$, $y^x$ is bigger ?
2011 Kosovo National Mathematical Olympiad
Grade 9
It is given the function $f: \left(\mathbb{R} - \{0\}\right) \to \mathbb{R}$ such that $f(x)=x+\frac{1}{x}$. Is this function injective ? Justify your answer.
A little boy wrote the numbers $1,2,\cdots,2011$ on a blackboard. He picks any two numbers $x,y$, erases them with a sponge and writes the number $|x-y|$. This process continues until only one number is left. Prove that the number left is even.
In triangle $ABC$ medians of triangle $BE$ and $AD$ are perpendicular to each other. Find the length of $\overline{AB}$, if $\overline{BC}=6$ and $\overline{AC}=8$
Let $n>1$ be an integer and $S_n$ the set of all permutations $\pi : \{1,2,\cdots,n \} \to \{1,2,\cdots,n \}$ where $\pi$ is bijective function. For every permutation $\pi \in S_n$ we define: \[ F(\pi)= \sum_{k=1}^n |k-\pi(k)| \ \ \text{and} \ \ M_{n}=\frac{1}{n!}\sum_{\pi \in S_n} F(\pi) \] where $M_n$ is taken with all permutations $\pi \in S_n$. Calculate the sum $M_n$.
Grade 10
Suppose that the roots $p,q$ of the equation $x^2-x+c=0$ where $c \in \mathbb{R}$, are rational numbers. Prove that the roots of the equation $x^2+px-q=0$ are also rational numbers.
Find all solutions to the equation: \[ \left(\left\lfloor x+\frac{7}{3} \right\rfloor \right)^2-\left\lfloor x-\frac{9}{4} \right\rfloor = 16 \]
Prove that the following inequality holds: \[ \left( \log_{24}48 \right)^2+ \left( \log_{12}54 \right)^2>4\]
Let $ a$, $ b$, $ c$ be the sides of a triangle, and $ S$ its area. Prove: \[ a^{2} + b^{2} + c^{2}\geq 4S \sqrt {3} \] In what case does equality hold?
Let $n>1$ be an integer and $S_n$ the set of all permutations $\pi : \{1,2,\cdots,n \} \to \{1,2,\cdots,n \}$ where $\pi$ is bijective function. For every permutation $\pi \in S_n$ we define: \[ F(\pi)= \sum_{k=1}^n |k-\pi(k)| \ \ \text{and} \ \ M_{n}=\frac{1}{n!}\sum_{\pi \in S_n} F(\pi) \] where $M_n$ is taken with all permutations $\pi \in S_n$. Calculate the sum $M_n$.
Grade 11
It is given the function $f:\mathbb{R} \to \mathbb{R}$ such that it holds $f(\sin x)=\sin (2011x)$. Find the value of $f(\cos x)$.
Is it possible that by using the following transformations: \[ f(x) \mapsto x^2 \cdot f \left(\frac{1}{x}+1 \right) \ \ \ \text{or} \ \ \ f(x) \mapsto (x-1)^2 \cdot f\left(\frac{1}{x-1} \right)\] the function $f(x)=x^2+5x+4$ is sent to the function $g(x)=x^2+10x+8$ ?
Find maximal value of the function $f(x)=8-3\sin^2 (3x)+6 \sin (6x)$
A point $P$ is given in the square $ABCD$ such that $\overline{PA}=3$, $\overline{PB}=7$ and $\overline{PD}=5$. Find the area of the square.
Let $n>1$ be an integer and $S_n$ the set of all permutations $\pi : \{1,2,\cdots,n \} \to \{1,2,\cdots,n \}$ where $\pi$ is bijective function. For every permutation $\pi \in S_n$ we define: \[ F(\pi)= \sum_{k=1}^n |k-\pi(k)| \ \ \text{and} \ \ M_{n}=\frac{1}{n!}\sum_{\pi \in S_n} F(\pi) \] where $M_n$ is taken with all permutations $\pi \in S_n$. Calculate the sum $M_n$.
Grade 12
The complex numbers $z_1$ and $z_2$ are given such that $z_1=-1+i$ and $z_2=2+4i$. Find the complex number $z_3$ such that $z_1,z_2,z_3$ are the points of an equilateral triangle. How many solutions do we have ?
It is given the function $f:\left( \mathbb{R} - \{0\} \right) \times \left( \mathbb{R}-\{0\} \right) \to \mathbb{R}$ such that $f(a,b)= \left| \frac{|b-a|}{|ab|}+\frac{b+a}{ab}-1 \right|+ \frac{|b-a|}{|ab|}+ \frac{b+a}{ab}+1$ where $a,b \not=0$. Prove that: \[ f(a,b)=4 \cdot \text{max} \left\{\frac{1}{a},\frac{1}{b},\frac{1}{2} \right\}\]
If $a,b,c$ are real positive numbers prove that the inequality holds: \[ \frac{\sqrt{a^3+b^3}}{a^2+b^2}+\frac{\sqrt{b^3+c^3}}{b^2+c^2}+\frac{\sqrt{c^3+a^3}}{c^2+a^2} \ge \frac{6(ab+bc+ac)}{(a+b+c)\sqrt{(a+b)(b+c)(c+a)}} \]
It is given a convex hexagon $A_1A_2 \cdots A_6$ such that all its interior angles are same valued (congruent). Denote by $a_1= \overline{A_1A_2},\ \ a_2=\overline{A_2A_3},\ \cdots , a_6=\overline{A_6A_1}.$ $a)$ Prove that holds: $ a_1-a_4=a_2-a_5=a_3-a_6 $ $b)$ Prove that if $a_1,a_2,a_3,...,a_6$ satisfy the above equation, we can construct a convex hexagon with its same-valued (congruent) interior angles.
Let $n>1$ be an integer and $S_n$ the set of all permutations $\pi : \{1,2,\cdots,n \} \to \{1,2,\cdots,n \}$ where $\pi$ is bijective function. For every permutation $\pi \in S_n$ we define: \[ F(\pi)= \sum_{k=1}^n |k-\pi(k)| \ \ \text{and} \ \ M_{n}=\frac{1}{n!}\sum_{\pi \in S_n} F(\pi) \] where $M_n$ is taken with all permutations $\pi \in S_n$. Calculate the sum $M_n$.