Let $ABC$ be an acute triangle. Let $D$ be a point on side $AB$ and $E$ be a point on side $AC$ such that lines $BC$ and $DE$ are parallel. Let $X$ be an interior point of $BCED$. Suppose rays $DX$ and $EX$ meet side $BC$ at points $P$ and $Q$, respectively, such that both $P$ and $Q$ lie between $B$ and $C$. Suppose that the circumcircles of triangles $BQX$ and $CPX$ intersect at a point $Y \neq X$. Prove that the points $A, X$, and $Y$ are collinear.
2024 Brazil Team Selection Test
APMO 2024 - Test 1
Consider a $100 \times 100$ table, and identify the cell in row $a$ and column $b$, $1 \leq a, b \leq 100$, with the ordered pair $(a, b)$. Let $k$ be an integer such that $51 \leq k \leq 99$. A $k$-knight is a piece that moves one cell vertically or horizontally and $k$ cells to the other direction; that is, it moves from $(a, b)$ to $(c, d)$ such that $(|a-c|, |b - d|)$ is either $(1, k)$ or $(k, 1)$. The $k$-knight starts at cell $(1, 1)$, and performs several moves. A sequence of moves is a sequence of cells $(x_0, y_0)= (1, 1)$, $(x_1, y_1), (x_2, y_2)$, $\ldots, (x_n, y_n)$ such that, for all $i = 1, 2, \ldots, n$, $1 \leq x_i , y_i \leq 100$ and the $k$-knight can move from $(x_{i-1}, y_{i-1})$ to $(x_i, y_i)$. In this case, each cell $(x_i, y_i)$ is said to be reachable. For each $k$, find $L(k)$, the number of reachable cells.
Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$
Prove that for every positive integer $t$ there is a unique permutation $a_0, a_1, \ldots , a_{t-1}$ of $0, 1, \ldots , t-1$ such that, for every $0 \leq i \leq t-1$, the binomial coefficient $\binom{t+i}{2a_i}$ is odd and $2a_i \neq t+i$.
Line $\ell$ intersects sides $BC$ and $AD$ of cyclic quadrilateral $ABCD$ in its interior points $R$ and $S$, respectively, and intersects ray $DC$ beyond point $C$ at $Q$, and ray $BA$ beyond point $A$ at $P$. Circumcircles of the triangles $QCR$ and $QDS$ intersect at $N \neq Q$, while circumcircles of the triangles $PAS$ and $PBR$ intersect at $M\neq P$. Let lines $MP$ and $NQ$ meet at point $X$, lines $AB$ and $CD$ meet at point $K$ and lines $BC$ and $AD$ meet at point $L$. Prove that point $X$ lies on line $KL$.
March 27th, 2024 - Test 2
Let $m$ and $n$ be positive integers greater than $1$. In each unit square of an $m\times n$ grid lies a coin with its tail side up. A move consists of the following steps. select a $2\times 2$ square in the grid; flip the coins in the top-left and bottom-right unit squares; flip the coin in either the top-right or bottom-left unit square. Determine all pairs $(m,n)$ for which it is possible that every coin shows head-side up after a finite number of moves. Thanasin Nampaisarn, Thailand
Let $\mathbb R_{>0}$ be the set of positive real numbers. Determine all functions $f \colon \mathbb R_{>0} \to \mathbb R_{>0}$ such that \[x \left(f(x) + f(y)\right) \geqslant \left(f(f(x)) + y\right) f(y)\]for every $x, y \in \mathbb R_{>0}$.
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$ and circumcentre $O$. Points $D\neq B$ and $E\neq C$ lie on $\omega$ such that $BD\perp AC$ and $CE\perp AB$. Let $CO$ meet $AB$ at $X$, and $BO$ meet $AC$ at $Y$. Prove that the circumcircles of triangles $BXD$ and $CYE$ have an intersection lie on line $AO$. Ivan Chan Kai Chin, Malaysia
Let $a,b,c,d$ be positive integers satisfying \[\frac{ab}{a+b}+\frac{cd}{c+d}=\frac{(a+b)(c+d)}{a+b+c+d}.\]Determine all possible values of $a+b+c+d$.
April 18th, 2024 - Test 3 Day 1
Professor Oak is feeding his $100$ Pokémon. Each Pokémon has a bowl whose capacity is a positive real number of kilograms. These capacities are known to Professor Oak. The total capacity of all the bowls is $100$ kilograms. Professor Oak distributes $100$ kilograms of food in such a way that each Pokémon receives a non-negative integer number of kilograms of food (which may be larger than the capacity of the bowl). The dissatisfaction level of a Pokémon who received $N$ kilograms of food and whose bowl has a capacity of $C$ kilograms is equal to $\lvert N-C\rvert$. Find the smallest real number $D$ such that, regardless of the capacities of the bowls, Professor Oak can distribute food in a way that the sum of the dissatisfaction levels over all the $100$ Pokémon is at most $D$. Oleksii Masalitin, Ukraine
A sequence of integers $a_0, a_1 …$ is called kawaii if $a_0 =0, a_1=1,$ and $$(a_{n+2}-3a_{n+1}+2a_n)(a_{n+2}-4a_{n+1}+3a_n)=0$$for all integers $n \geq 0$. An integer is called kawaii if it belongs to some kawaii sequence. Suppose that two consecutive integers $m$ and $m+1$ are both kawaii (not necessarily belonging to the same kawaii sequence). Prove that $m$ is divisible by $3,$ and that $m/3$ is also kawaii.
Let $N$ be a positive integer, and consider an $N \times N$ grid. A right-down path is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence. Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths. [asy][asy] size(4cm); draw((5,-1)--(0,-1)--(0,-2)--(5,-2)--(5,-3)--(0,-3)--(0,-4)--(5,-4),gray+linewidth(0.5)+miterjoin); draw((1,-5)--(1,0)--(2,0)--(2,-5)--(3,-5)--(3,0)--(4,0)--(4,-5),gray+linewidth(0.5)+miterjoin); draw((0,0)--(5,0)--(5,-5)--(0,-5)--cycle,black+linewidth(2.5)+miterjoin); draw((0,-1)--(3,-1)--(3,-2)--(1,-2)--(1,-4)--(4,-4)--(4,-3)--(2,-3)--(2,-2),black+linewidth(2.5)+miterjoin); draw((3,0)--(3,-1),black+linewidth(2.5)+miterjoin); draw((1,-4)--(1,-5),black+linewidth(2.5)+miterjoin); draw((4,-3)--(4,-1)--(5,-1),black+linewidth(2.5)+miterjoin); [/asy][/asy] Proposed by Zixiang Zhou, Canada
April 19th, 2024 - Test 3 Day 2
Let $ABCD$ be a cyclic quadrilateral with $\angle BAD < \angle ADC$. Let $M$ be the midpoint of the arc $CD$ not containing $A$. Suppose there is a point $P$ inside $ABCD$ such that $\angle ADB = \angle CPD$ and $\angle ADP = \angle PCB$. Prove that lines $AD, PM$, and $BC$ are concurrent.
Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then translate (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$. Determine the smallest number of pieces Paul needs to make in order to accomplish this.
Let $N$ be a positive integer. Prove that there exist three permutations $a_1,\dots,a_N$, $b_1,\dots,b_N$, and $c_1,\dots,c_N$ of $1,\dots,N$ such that \[\left|\sqrt{a_k}+\sqrt{b_k}+\sqrt{c_k}-2\sqrt{N}\right|<2023\]for every $k=1,2,\dots,N$.
August 5th, 2024 - IberoAmerican Test - Test 4
Given an integer $n > 1$, let $1 = a_1 < a_2 < \cdots < a_t = n - 1$ be all positive integers less than $n$ that are coprime to $n$. Find all $n$ such that there is no $i \in \{1, 2, \ldots , t - 1\}$ satisfying $3 | a_i + a_{i+1}$.
Let \( ABC \) be an acute-angled scalene triangle with circumcenter \( O \). Denote by \( M \), \( N \), and \( P \) the midpoints of sides \( BC \), \( CA \), and \( AB \), respectively. Let \( \omega \) be the circle passing through \( A \) and tangent to \( OM \) at \( O \). The circle \( \omega \) intersects \( AB \) and \( AC \) at points \( E \) and \( F \), respectively (where \( E \) and \( F \) are distinct from \( A \)). Let \( I \) be the midpoint of segment \( EF \), and let \( K \) be the intersection of lines \( EF \) and \( NP \). Prove that \( AO = 2IK \) and that triangle \( IMO \) is isosceles.
Let \( n \) be a positive integer. A function \( f : \{0, 1, \dots, n\} \to \{0, 1, \dots, n\} \) is called \( n \)-Bolivian if it satisfies the following conditions: • \( f(0) = 0 \); • \( f(t) \in \{ t-1, f(t-1), f(f(t-1)), \dots \} \) for all \( t = 1, 2, \dots, n \). For example, if \( n = 3 \), then the function defined by \( f(0) = f(1) = 0 \), \( f(2) = f(3) = 1 \) is 3-Bolivian, but the function defined by \( f(0) = f(1) = f(2) = 0 \), \( f(3) = 1 \) is not 3-Bolivian. For a fixed positive integer \( n \), Gollum selects an \( n \)-Bolivian function. Smeagol, knowing that \( f \) is \( n \)-Bolivian, tries to figure out which function was chosen by asking questions of the type: \[ \text{How many integers } a \text{ are there such that } f(a) = b? \] given a \( b \) of his choice. Show that if Gollum always answers correctly, Smeagol can determine \( f \) and find the minimum number of questions he needs to ask, considering all possible choices of \( f \).
Find all pairs of positive integers \( (a, b) \) such that \( f(x) = x \) is the only function \( f : \mathbb{R} \to \mathbb{R} \) that satisfies \[ f^a(x)f^b(y) + f^b(x)f^a(y) = 2xy \quad \text{for all } x, y \in \mathbb{R}. \]Here, \( f^n(x) \) represents the function obtained by applying \( f \) \( n \) times to \( x \). That is, \( f^1(x) = f(x) \) and \( f^{n+1}(x) = f(f^n(x))\) for all \(n \geq 1\).