1998 Romania National Olympiad

Grade VII

1

Let $n$ be a positive integer and $x_1,x_2,...,x_n$ be integer numbers such that $$x_1^2+x_2^2+...+x_n^2+ n^3 \le (2n - 1)(x_1+x_2+...+x_n ) + n^2$$. Show that : a) $x_1,x_2,...,x_n$ are non-negative integers b) the number $x_1+x_2+...+x_n+n+1$ is not a perfect square.

2

Show that there is no positive integer $n$ such that $n + k^2$ is a perfect square for at least $n$ positive integer values of $k$.

3

In the exterior of the triangle $ABC$ with $m(\angle B) > 45^o$, $m(\angle C) >45°^o$ one constructs the right isosceles triangles $ACM$ and $ABN$ such that $m(\angle CAM) = m(\angle BAN) = 90^o$ and, in the interior of $ABC$, the right isosceles triangle $BCP$, with $m(\angle P) = 90^o$. Show that the triangle $MNP$ is a right isosceles triangle.

4

Let $ABCD$ be a rectangle and let $E \in (BD)$ such that $m( \angle DAE) =15^o$. Let $F \in AB$ such that $EF \perp AB$. It is known that $EF=\frac12 AB$ and $AD = a$. Find the measure of the angle $\angle EAC$ and the length of the segment $(EC)$.

Grade VIII

1

Let $a$ be a real number and $A = \{(x, y) \in R \times R | \, x + y = a\}$, $B = \{(x,y) \in R \times R | \, x^3 + y^3 < a\}$ . Find all values of $a$ such that $A \cap B = \emptyset$ .

2

Let $P(x) = a_{1998}X^{1998} + a_{1997}X^{1997} +...+a_1X + a_0$ be a polynomial with real coefficients such that $P(0) \ne P (-1)$, and let $a, b$ be real numbers. Let $Q(x) = b_{1998}X^{1998} + b_{1997}X^{1997} +...+b_1X + b_0$ be the polynomial with real coefficients obtained by taking $b_k = aa_k + b$ ,$\forall k = 0, 1,2,..., 1998$. Show that if $Q(0) = Q (-1) \ne 0$ , then the polynomial $Q$ has no real roots.

3

In the right-angled trapezoid $AB CD$, $AB \parallel CD$, $m( \angle A) = 90°$, $AD = DC = a$ and $AB =2a$. On the perpendiculars raised in $C$ and $D$ on the plane containing the trapezoid one considers points $E$ and $F$ (on the same side of the plane) such that $CE = 2a$ and $DF = a$. Find the distance from the point $B$ to the plane $(AEF)$ and the measure of the angle between the lines $AF$ and $BE$.

4

Let $ABCD$ be an arbitrary tetrahedron. The bisectors of the angles $\angle BDC$, $\angle CDA$ and $\angle ADB$ intersect $BC$, $CA$ and $AB$, in the points $M$, $N$, $P$, respectively. a) Show that the planes $(ADM)$, $(BDN)$ and $(CDP)$ have a common line $d$. b) Let the points $A' \in (AD)$, $B' \in (BD)$ and $C' \in (CD)$ be such that $(AA') = (BB') = (CC')$ ; show that if $G$ and $G'$ are the centroids of $ABC$ and $A'B'C'$ then the lines $GG'$ and $d$ are either parallel or identical.

Grade IX

1

Find the integer numbers $a, b, c$ such that the function $f: R \to R$, $f(x) = ax^2 +bx + c$ satisfies the equalities : $$f(f(1) ))= f (f(2 ) )= f(f (3 ))$$

2

Let $ABCD$ be a cyclic quadrilateral. Show that $\vert \overline{AC} - \overline{BD} \vert \le \vert \overline{AB}-\overline{CD} \vert$ and determine when does equality hold.

3

Find the rational roots (if any) of the equation $$abx^2 + (a^2 + b^2 )x +1 = 0 , \,\,\,\, (a, b \in Z).$$

4

Let $A_1A_2...A_n$ be a regular polygon ($n > 4$), $T$ be the common point of $A_1A_2$ and $A_{n-1}A_n$ and $M$ be a point in the interior of the triangle $A_1A_nT$. Show that the equality $$\sum_{i=1}^{n-1} \frac{\sin^2 \left(\angle A_iMA_{i+1}\right)}{d(M,A_iA_{i+1}}=\frac{\sin^2 \left(\angle A_1MA_n\right)}{d(M,A_1A_n} $$holds if and only if $M$ belongs to the circumcircle of the polygon.

Grade X

1

Let $n \ge 2$ be an integer and $M= \{1,2,\ldots,n\}.$ For each $k \in \{1,2,\ldots,n-1\}$ we define $$x_k= \frac{1}{n+1} \sum_{\substack{A \subset M \\ |A|=k}} (\min A + \max A).$$Prove that the numbers $x_k$ are integers and not all of them are divisible by $4.$ Notations$|A|$ is the cardinal of $A$ $\min A$ is the smallest element in $A$ $\max A$ is the largest element in $A$

2

Let $a \ge1$ be a real number and $z$ be a complex number such that $| z + a | \le a$ and $|z^2+ a | \le a$. Show that $| z | \le a$.

3

Let $ABCD$ be a tetrahedron and $A'$, $B'$, $C'$ be arbitrary points on the edges $[DA]$, $[DB]$, $[DC]$, respectively. One considers the points $P_c \in [AB]$, $P_a \in [BC]$, $P_b \in [AC]$ and $P'_c \in [A'B']$, $P'_a \in [B'C']$, $P'_b \in [A'C']$ such that $$\frac{P_cA}{P_cB}= \frac{P'_cA'}{P'_cB'}=\frac{AA'}{BB'}\,\,\, , \,\,\,\frac{P_aB}{P_aC}= \frac{P'_aB'}{P'_aC'}=\frac{BB'}{CC'}\,\,\, , \,\,\, \frac{P_bC}{P_bA}= \frac{P'_bC'}{P'_bA'}=\frac{CC'}{AA'}$$Prove that: a) the lines $AP_a,$ $BP_b$, $CP_c$ have a common point $P$ and the lines $A'P'_a$, $B'P'_b$ , $C'P'_c$ have a common point $P'$ b) $\frac{PC}{PP_c}=\frac{P'C'}{P'P'_c} $ c) if $A', B', C'$ are variable points on the edges $[DA]$, $[DB]$, $[DC]$, then the line $PP'$ is always parallel to a fixed line.

4

Suppse that $n\geq 2$ and $0<x_1<x_2<...<x_n$ are integer numbers. We denote that :\[ S_k=\sum_{A\subset \{x_1,x_2,...,x_k\}} \frac{1}{\prod_{a\in A}a} , k=1,2,...,n. \](where $A$ is a non-empty subset). Show that if $S_n ,S_{n-1}$ were positive integer numbers , then $\forall k : S_k$ is a positive integer. Click to reveal hidden textfixed wording

Grade XI

1

We consider the nonzero matrices $A_0, A_1, \ldots, A_n \in \mathcal{M}_2(\mathbb{R}),$ $n \ge 2,$ with the properties: $A_0 \neq aI_2$ for any $a \in \mathbb{R}$ and $A_0A_k=A_kA_0$ for $k= \overline{1,n}.$ Prove that a) $\det \left(\sum\limits_{k=1}^n A_k^2 \right) \ge 0$; b) If $\det \left(\sum\limits_{k=1}^n A_k^2 \right) = 0$ and $A_2 \ne aA_1$ for any $a \in \mathbb{R},$ then $\sum\limits_{k=1}^n A_k^2=O_2.$

2

Let $(a_n)_{n \ge 1}$ be a sequence of real numbers satisfying the properties: the sequence $x_n=\sum\limits_{k=1}^n a_k^2$ is convergent; the sequence $y_n=\sum\limits_{k=1}^n a_k$ is unbounded. Prove that the sequence $(b_n)_{n \ge 1}$ given by $b_n=\{y_n\}$ is divergent. Note: $\{ x \}$ denotes the fractional part of $x.$

3

Suppose $f:\mathbb{R}\to\mathbb{R}$ is a differentiable function for which the inequality $f'(x) \leq f'(x+\frac{1}{n})$ holds for every $x\in\mathbb{R}$ and every $n\in\mathbb{N}$.Prove that f is continiously differentiable

4

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that for any $a,b \in \mathbb{R},$ $a<b,$ there are $c_1,c_2 \in [a,b],$ $c_1 \le c_2$ such that $f(c_1)= \min_{x \in [a,b]} f(x)$ and $f(c_2)= \max_{x \in [a,b]} f(x).$ Prove that $f$ is increasing.

Grade XII

1

Suppose that $a,b\in\mathbb{R}^+$ which $a+b<1$ and $f:[0,+\infty) \rightarrow [0,+\infty) $ be the increasing function s.t. $\forall x\geq 0 ,\int _0^x f(t)dt=\int _0^{ax} f(t)dt+\int _0^{bx} f(t)dt$. Prove that $\forall x\geq 0 , f(x)=0$

2

$\textbf{a) }$ Let $p \geq 2$ be a natural number and $G_p = \bigcup\limits_{n \in \mathbb{N}} \lbrace z \in \mathbb{C} \mid z^{p^n}=1 \rbrace.$ Prove that $(G_p, \cdot)$ is a subgroup of $(\mathbb{C}^*, \cdot).$ $\textbf{b) }$ Let $(H, \cdot)$ be an infinite subgroup of $(\mathbb{C}^*, \cdot).$ Prove that all proper subgroups of $H$ are finite if and only if $H=G_p$ for some prime $p.$

3

A ring $A$ is called Boolean if $x^2 = x$ for every $x \in A$. Prove that: a) A finite set $A$ with $n \geq 2$ elements can be equipped with the structure of a Boolean ring if and only if $n = 2^k$ for some positive integer $k$. b) The set of nonnegative integers can be equipped with the structure of a Boolean ring.

4

Let $K\subseteq \mathbb C$ be a field with the operations from $\mathbb C$ s.t. i) K has exactly two endomorphisms, namely f and g ii) if f(x)=g(x) then $x\in\mathbb Q$. Prove that there exists an integer $d\neq 1$ free from squares so that $K=\mathbb Q(\sqrt d)$.