The sequence $(a_n)_{n\in\mathbb{N}}$ is defined by $a_1=3$ and $$a_n=a_1a_2\cdots a_{n-1}-1$$Show that there exist infinitely many prime number that divide at least one number in this sequences
2024 Thailand TSTST
Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).
Find the maximal number of points, such that there exist a configuration of $2023$ lines on the plane, with each lines pass at least $2$ points.
We call polynomial $S(x)\in\mathbb{R}[x]$ sadeh whenever it's divisible by $x$ but not divisible by $x^2$. For the polynomial $P(x)\in\mathbb{R}[x]$ we know that there exists a sadeh polynomial $Q(x)$ such that $P(Q(x))-Q(2x)$ is divisible by $x^2$. Prove that there exists sadeh polynomial $R(x)$ such that $P(R(x))-R(2x)$ is divisible by $x^{1401}$.