Professor Oak is feeding his $100$ Pokémon. Each Pokémon has a bowl whose capacity is a positive real number of kilograms. These capacities are known to Professor Oak. The total capacity of all the bowls is $100$ kilograms. Professor Oak distributes $100$ kilograms of food in such a way that each Pokémon receives a non-negative integer number of kilograms of food (which may be larger than the capacity of the bowl). The dissatisfaction level of a Pokémon who received $N$ kilograms of food and whose bowl has a capacity of $C$ kilograms is equal to $\lvert N-C\rvert$. Find the smallest real number $D$ such that, regardless of the capacities of the bowls, Professor Oak can distribute food in a way that the sum of the dissatisfaction levels over all the $100$ Pokémon is at most $D$. Oleksii Masalitin, Ukraine
2024 Germany Team Selection Test
VAIMO 1
Let $ABCDE$ be a convex pentagon such that $\angle ABC = \angle AED = 90^\circ$. Suppose that the midpoint of $CD$ is the circumcenter of triangle $ABE$. Let $O$ be the circumcenter of triangle $ACD$. Prove that line $AO$ passes through the midpoint of segment $BE$.
Let $a_1, \dots, a_n, b_1, \dots, b_n$ be $2n$ positive integers such that the $n+1$ products \[a_1 a_2 a_3 \cdots a_n, b_1 a_2 a_3 \cdots a_n, b_1 b_2 a_3 \cdots a_n, \dots, b_1 b_2 b_3 \cdots b_n\]form a strictly increasing arithmetic progression in that order. Determine the smallest possible integer that could be the common difference of such an arithmetic progression.
VAIMO 2
Let $m$ and $n$ be positive integers greater than $1$. In each unit square of an $m\times n$ grid lies a coin with its tail side up. A move consists of the following steps. select a $2\times 2$ square in the grid; flip the coins in the top-left and bottom-right unit squares; flip the coin in either the top-right or bottom-left unit square. Determine all pairs $(m,n)$ for which it is possible that every coin shows head-side up after a finite number of moves. Thanasin Nampaisarn, Thailand
Determine all ordered pairs $(a,p)$ of positive integers, with $p$ prime, such that $p^a+a^4$ is a perfect square. Proposed by Tahjib Hossain Khan, Bangladesh
Let $ABCD$ be a cyclic quadrilateral with $\angle BAD < \angle ADC$. Let $M$ be the midpoint of the arc $CD$ not containing $A$. Suppose there is a point $P$ inside $ABCD$ such that $\angle ADB = \angle CPD$ and $\angle ADP = \angle PCB$. Prove that lines $AD, PM$, and $BC$ are concurrent.
AIMO 1
For positive integers $n$ and $k \geq 2$, define $E_k(n)$ as the greatest exponent $r$ such that $k^r$ divides $n!$. Prove that there are infinitely many $n$ such that $E_{10}(n) > E_9(n)$ and infinitely many $m$ such that $E_{10}(m) < E_9(m)$.
Let $N$ be a positive integer, and consider an $N \times N$ grid. A right-down path is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence. Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths. [asy][asy] size(4cm); draw((5,-1)--(0,-1)--(0,-2)--(5,-2)--(5,-3)--(0,-3)--(0,-4)--(5,-4),gray+linewidth(0.5)+miterjoin); draw((1,-5)--(1,0)--(2,0)--(2,-5)--(3,-5)--(3,0)--(4,0)--(4,-5),gray+linewidth(0.5)+miterjoin); draw((0,0)--(5,0)--(5,-5)--(0,-5)--cycle,black+linewidth(2.5)+miterjoin); draw((0,-1)--(3,-1)--(3,-2)--(1,-2)--(1,-4)--(4,-4)--(4,-3)--(2,-3)--(2,-2),black+linewidth(2.5)+miterjoin); draw((3,0)--(3,-1),black+linewidth(2.5)+miterjoin); draw((1,-4)--(1,-5),black+linewidth(2.5)+miterjoin); draw((4,-3)--(4,-1)--(5,-1),black+linewidth(2.5)+miterjoin); [/asy][/asy] Proposed by Zixiang Zhou, Canada
AIMO 2
Let $ABC$ be a triangle with $AC > BC,$ let $\omega$ be the circumcircle of $\triangle ABC,$ and let $r$ be its radius. Point $P$ is chosen on $\overline{AC}$ such taht $BC=CP,$ and point $S$ is the foot of the perpendicular from $P$ to $\overline{AB}$. Ray $BP$ mets $\omega$ again at $D$. Point $Q$ is chosen on line $SP$ such that $PQ = r$ and $S,P,Q$ lie on a line in that order. Finally, let $E$ be a point satisfying $\overline{AE} \perp \overline{CQ}$ and $\overline{BE} \perp \overline{DQ}$. Prove that $E$ lies on $\omega$.
A sequence of integers $a_0, a_1 …$ is called kawaii if $a_0 =0, a_1=1,$ and $$(a_{n+2}-3a_{n+1}+2a_n)(a_{n+2}-4a_{n+1}+3a_n)=0$$for all integers $n \geq 0$. An integer is called kawaii if it belongs to some kawaii sequence. Suppose that two consecutive integers $m$ and $m+1$ are both kawaii (not necessarily belonging to the same kawaii sequence). Prove that $m$ is divisible by $3,$ and that $m/3$ is also kawaii.
AIMO 3
Let $\mathbb{R}$ be the set of real numbers. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that \[f(x+y)f(x-y)\geqslant f(x)^2-f(y)^2\]for every $x,y\in\mathbb{R}$. Assume that the inequality is strict for some $x_0,y_0\in\mathbb{R}$. Prove that either $f(x)\geqslant 0$ for every $x\in\mathbb{R}$ or $f(x)\leqslant 0$ for every $x\in\mathbb{R}$.
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. A circle $\Gamma$ is internally tangent to $\omega$ at $A$ and also tangent to $BC$ at $D$. Let $AB$ and $AC$ intersect $\Gamma$ at $P$ and $Q$ respectively. Let $M$ and $N$ be points on line $BC$ such that $B$ is the midpoint of $DM$ and $C$ is the midpoint of $DN$. Lines $MP$ and $NQ$ meet at $K$ and intersect $\Gamma$ again at $I$ and $J$ respectively. The ray $KA$ meets the circumcircle of triangle $IJK$ again at $X\neq K$. Prove that $\angle BXP = \angle CXQ$. Kian Moshiri, United Kingdom
AIMO 4
Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then translate (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$. Determine the smallest number of pieces Paul needs to make in order to accomplish this.
Let $a_1,a_2,\dots,a_{2023}$ be positive integers such that $a_1,a_2,\dots,a_{2023}$ is a permutation of $1,2,\dots,2023$, and $|a_1-a_2|,|a_2-a_3|,\dots,|a_{2022}-a_{2023}|$ is a permutation of $1,2,\dots,2022$. Prove that $\max(a_1,a_{2023})\ge 507$.
AIMO 5
Elisa has $2023$ treasure chests, all of which are unlocked and empty at first. Each day, Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts according to the following rules: if more than one chests are unlocked, it locks one of them, or if there is only one unlocked chest, it unlocks all the chests. Given that this process goes on forever, prove that there is a constant $C$ with the following property: Elisa can ensure that the difference between the numbers of gems in any two chests never exceeds $C$, regardless of how the fairy chooses the chests to unlock.
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$ and circumcentre $O$. Points $D\neq B$ and $E\neq C$ lie on $\omega$ such that $BD\perp AC$ and $CE\perp AB$. Let $CO$ meet $AB$ at $X$, and $BO$ meet $AC$ at $Y$. Prove that the circumcircles of triangles $BXD$ and $CYE$ have an intersection lie on line $AO$. Ivan Chan Kai Chin, Malaysia
AIMO 6
Determine the maximal length $L$ of a sequence $a_1,\dots,a_L$ of positive integers satisfying both the following properties: every term in the sequence is less than or equal to $2^{2023}$, and there does not exist a consecutive subsequence $a_i,a_{i+1},\dots,a_j$ (where $1\le i\le j\le L$) with a choice of signs $s_i,s_{i+1},\dots,s_j\in\{1,-1\}$ for which \[s_ia_i+s_{i+1}a_{i+1}+\dots+s_ja_j=0.\]
Let $a_1<a_2<a_3<\dots$ be positive integers such that $a_{k+1}$ divides $2(a_1+a_2+\dots+a_k)$ for every $k\geqslant 1$. Suppose that for infinitely many primes $p$, there exists $k$ such that $p$ divides $a_k$. Prove that for every positive integer $n$, there exists $k$ such that $n$ divides $a_k$.
Let $N$ be a positive integer. Prove that there exist three permutations $a_1,\dots,a_N$, $b_1,\dots,b_N$, and $c_1,\dots,c_N$ of $1,\dots,N$ such that \[\left|\sqrt{a_k}+\sqrt{b_k}+\sqrt{c_k}-2\sqrt{N}\right|<2023\]for every $k=1,2,\dots,N$.
AIMO 7
Show that there exists a real constant $C>1$ with the following property: For any positive integer $n$, there are at least $C^n$ positive integers with exactly $n$ decimal digits, which are divisible by the product of their digits. (In particular, these $n$ digits are all non-zero.) Proposed by Jean-Marie De Koninck and Florian Luca
The Imomi archipelago consists of $n\geq 2$ islands. Between each pair of distinct islands is a unique ferry line that runs in both directions, and each ferry line is operated by one of $k$ companies. It is known that if any one of the $k$ companies closes all its ferry lines, then it becomes impossible for a traveller, no matter where the traveller starts at, to visit all the islands exactly once (in particular, not returning to the island the traveller started at). Determine the maximal possible value of $k$ in terms of $n$. Anton Trygub, Ukraine