2024 Azerbaijan BMO TST

Day 1

1

For positive integers $n$ and $k \geq 2$, define $E_k(n)$ as the greatest exponent $r$ such that $k^r$ divides $n!$. Prove that there are infinitely many $n$ such that $E_{10}(n) > E_9(n)$ and infinitely many $m$ such that $E_{10}(m) < E_9(m)$.

2

Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.

3

Let $n$ be a positive integer. Using the integers from $1$ to $4n$ inclusive, pairs are to be formed such that the product of the numbers in each pair is a perfect square. Each number can be part of at most one pair, and the two numbers in each pair must be different. Determine, for each $n$, the maximum number of pairs that can be formed.

Day 2

4

Joe and Penny play a game. Initially there are $5000$ stones in a pile, and the two players remove stones from the pile by making a sequence of moves. On the $k$-th move, any number of stones between $1$ and $k$ inclusive may be removed. Joe makes the odd-numbered moves and Penny makes the even-numbered moves. The player who removes the very last stone is the winner. Who wins if both players play perfectly?

5

Let $a_1,a_2,\dots,a_{2023}$ be positive integers such that $a_1,a_2,\dots,a_{2023}$ is a permutation of $1,2,\dots,2023$, and $|a_1-a_2|,|a_2-a_3|,\dots,|a_{2022}-a_{2023}|$ is a permutation of $1,2,\dots,2022$. Prove that $\max(a_1,a_{2023})\ge 507$.

6

Let $ABC$ be an acute triangle ($AB < BC < AC$) with circumcircle $\Gamma$. Assume there exists $X \in AC$ satisfying $AB=BX$ and $AX=BC$. Points $D, E \in \Gamma$ are taken such that $\angle ADB<90^{\circ}$, $DA=DB$ and $BC=CE$. Let $P$ be the intersection point of $AE$ with the tangent line to $\Gamma$ at $B$, and let $Q$ be the intersection point of $AB$ with tangent line to $\Gamma$ at $C$. Show that the projection of $D$ onto $PQ$ lies on the circumcircle of $\triangle PAB$.