Find all pairs $(a,b)$ of positive integers for which $\gcd(a,b)=1$, and $\frac{a}{b}=\overline{b.a}$. (For example, if $a=92$ and $b=13$, then $b/a=13.92$ )
2013 Iran MO (2nd Round)
Day 1
Let $n$ be a natural number and suppose that $ w_1, w_2, \ldots , w_n$ are $n$ weights . We call the set of $\{ w_1, w_2, \ldots , w_n\}$ to be a Perfect Set if we can achieve all of the $1,2, \ldots, W$ weights with sums of $ w_1, w_2, \ldots , w_n$, where $W=\sum_{i=1}^n w_i $. Prove that if we delete the maximum weight of a Perfect Set, the other weights make again a Perfect Set.
Let $M$ be the midpoint of (the smaller) arc $BC$ in circumcircle of triangle $ABC$. Suppose that the altitude drawn from $A$ intersects the circle at $N$. Draw two lines through circumcenter $O$ of $ABC$ paralell to $MB$ and $MC$, which intersect $AB$ and $AC$ at $K$ and $L$, respectively. Prove that $NK=NL$.
Day 2
Let $P$ be a point out of circle $C$. Let $PA$ and $PB$ be the tangents to the circle drawn from $C$. Choose a point $K$ on $AB$ . Suppose that the circumcircle of triangle $PBK$ intersects $C$ again at $T$. Let ${P}'$ be the reflection of $P$ with respect to $A$. Prove that \[ \angle PBT = \angle {P}'KA \]
Suppose a $m \times n$ table. We write an integer in each cell of the table. In each move, we chose a column, a row, or a diagonal (diagonal is the set of cells which the difference between their row number and their column number is constant) and add either $+1$ or $-1$ to all of its cells. Prove that if for all arbitrary $3 \times 3$ table we can change all numbers to zero, then we can change all numbers of $m \times n$ table to zero. (Hint: First of all think about it how we can change number of $ 3 \times 3$ table to zero.)
Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive integers for which \[ a_{n+2} = \left[\frac{2a_n}{a_{n+1}}\right]+\left[\frac{2a_{n+1}}{a_n}\right]. \] Prove that there exists a positive integer $m$ such that $a_m=4$ and $a_{m+1} \in\{3,4\}$. Note. $[x]$ is the greatest integer not exceeding $x$.