Consider a circle $C_1$ and a point $O$ on it. Circle $C_2$ with center $O$, intersects $C_1$ in two points $P$ and $Q$. $C_3$ is a circle which is externally tangent to $C_2$ at $R$ and internally tangent to $C_1$ at $S$ and suppose that $RS$ passes through $Q$. Suppose $X$ and $Y$ are second intersection points of $PR$ and $OR$ with $C_1$. Prove that $QX$ is parallel with $SY$.
2012 Iran MO (2nd Round)
Day 1
Suppose $n$ is a natural number. In how many ways can we place numbers $1,2,....,n$ around a circle such that each number is a divisor of the sum of it's two adjacent numbers?
Prove that if $t$ is a natural number then there exists a natural number $n>1$ such that $(n,t)=1$ and none of the numbers $n+t,n^2+t,n^3+t,....$ are perfect powers.
Day 2
a) Do there exist $2$-element subsets $A_1,A_2,A_3,...$ of natural numbers such that each natural number appears in exactly one of these sets and also for each natural number $n$, sum of the elements of $A_n$ equals $1391+n$? b) Do there exist $2$-element subsets $A_1,A_2,A_3,...$ of natural numbers such that each natural number appears in exactly one of these sets and also for each natural number $n$, sum of the elements of $A_n$ equals $1391+n^2$? Proposed by Morteza Saghafian
Consider the second degree polynomial $x^2+ax+b$ with real coefficients. We know that the necessary and sufficient condition for this polynomial to have roots in real numbers is that its discriminant, $a^2-4b$ be greater than or equal to zero. Note that the discriminant is also a polynomial with variables $a$ and $b$. Prove that the same story is not true for polynomials of degree $4$: Prove that there does not exist a $4$ variable polynomial $P(a,b,c,d)$ such that: The fourth degree polynomial $x^4+ax^3+bx^2+cx+d$ can be written as the product of four $1$st degree polynomials if and only if $P(a,b,c,d)\ge 0$. (All the coefficients are real numbers.) Proposed by Sahand Seifnashri
The incircle of triangle $ABC$, is tangent to sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. The reflection of $F$ with respect to $B$ and the reflection of $E$ with respect to $C$ are $T$ and $S$ respectively. Prove that the incenter of triangle $AST$ is inside or on the incircle of triangle $ABC$. Proposed by Mehdi E'tesami Fard