2010 Iran MO (2nd Round)

1

Let $a,b$ be two positive integers and $a>b$.We know that $\gcd(a-b,ab+1)=1$ and $\gcd(a+b,ab-1)=1$. Prove that $(a-b)^2+(ab+1)^2$ is not a perfect square.

2

There are $n$ points in the page such that no three of them are collinear.Prove that number of triangles that vertices of them are chosen from these $n$ points and area of them is 1,is not greater than $\frac23(n^2-n)$.

3

Circles $W_1,W_2$ meet at $D$and $P$. $A$ and $B$ are on $W_1,W_2$ respectively, such that $AB$ is tangent to $W_1$ and $W_2$. Suppose $D$ is closer than $P$ to the line $AB$. $AD$ meet circle $W_2$ for second time at $C$. Let $M$ be the midpoint of $BC$. Prove that $\angle{DPM}=\angle{BDC}$.

4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

5

In triangle $ABC$ we havev $\angle A=\frac{\pi}{3}$. Construct $E$ and $F$ on continue of $AB$ and $AC$ respectively such that $BE=CF=BC$. Suppose that $EF$ meets circumcircle of $\triangle ACE$ in $K$. ($K\not \equiv E$). Prove that $K$ is on the bisector of $\angle A$.

6

A school has $n$ students and some super classes are provided for them. Each student can participate in any number of classes that he/she wants. Every class has at least two students participating in it. We know that if two different classes have at least two common students, then the number of the students in the first of these two classes is different from the number of the students in the second one. Prove that the number of classes is not greater that $\left(n-1\right)^2$.