Let $n,p>1$ be positive integers and $p$ be prime. We know that $n|p-1$ and $p|n^3-1$. Prove that $4p-3$ is a perfect square.
2005 Iran MO (2nd round)
Day 1
In triangle $ABC$, $\angle A=60^{\circ}$. The point $D$ changes on the segment $BC$. Let $O_1,O_2$ be the circumcenters of the triangles $\Delta ABD,\Delta ACD$, respectively. Let $M$ be the meet point of $BO_1,CO_2$ and let $N$ be the circumcenter of $\Delta DO_1O_2$. Prove that, by changing $D$ on $BC$, the line $MN$ passes through a constant point.
In one galaxy, there exist more than one million stars. Let $M$ be the set of the distances between any $2$ of them. Prove that, in every moment, $M$ has at least $79$ members. (Suppose each star as a point.)
Day 2
We have a $2\times n$ rectangle. We call each $1\times1$ square a room and we show the room in the $i^{th}$ row and $j^{th}$ column as $(i,j)$. There are some coins in some rooms of the rectangle. If there exist more than $1$ coin in each room, we can delete $2$ coins from it and add $1$ coin to its right adjacent room OR we can delete $2$ coins from it and add $1$ coin to its up adjacent room. Prove that there exists a finite configuration of allowable operations such that we can put a coin in the room $(1,n)$.
$BC$ is a diameter of a circle and the points $X,Y$ are on the circle such that $XY\perp BC$. The points $P,M$ are on $XY,CY$ (or their stretches), respectively, such that $CY||PB$ and $CX||PM$. Let $K$ be the meet point of the lines $XC,BP$. Prove that $PB\perp MK$.
Find all functions $f:\mathbb{R}^{+}\to \mathbb{R}^{+}$ such that for all positive real numbers $x$ and $y$, the following equation holds: \[(x+y)f(f(x)y)=x^2f(f(x)+f(y)).\]