2003 Iran MO (2nd round)

Day 1

1

We call the positive integer $n$ a $3-$stratum number if we can divide the set of its positive divisors into $3$ subsets such that the sum of each subset is equal to the others. $a)$ Find a $3-$stratum number. $b)$ Prove that there are infinitely many $3-$stratum numbers.

2

In a village, there are $n$ houses with $n>2$ and all of them are not collinear. We want to generate a water resource in the village. For doing this, point $A$ is better than point $B$ if the sum of the distances from point $A$ to the houses is less than the sum of the distances from point $B$ to the houses. We call a point ideal if there doesn’t exist any better point than it. Prove that there exist at most $1$ ideal point to generate the resource.

3

$n$ volleyball teams have competed to each other (each $2$ teams have competed exactly $1$ time.). For every $2$ distinct teams like $A,B$, there exist exactly $t$ teams which have lost their match with $A,B$. Prove that $n=4t+3$. (Notabene that in volleyball, there doesn’t exist tie!)

Day 2

1

Let $x,y,z\in\mathbb{R}$ and $xyz=-1$. Prove that: \[ x^4+y^4+z^4+3(x+y+z)\geq\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{x}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{z^2}{y}. \]

2

$\angle{A}$ is the least angle in $\Delta{ABC}$. Point $D$ is on the arc $BC$ from the circumcircle of $\Delta{ABC}$. The perpendicular bisectors of the segments $AB,AC$ intersect the line $AD$ at $M,N$, respectively. Point $T$ is the meet point of $BM,CN$. Suppose that $R$ is the radius of the circumcircle of $\Delta{ABC}$. Prove that: \[ BT+CT\leq{2R}. \]

3

We have a chessboard and we call a $1\times1$ square a room. A robot is standing on one arbitrary vertex of the rooms. The robot starts to move and in every one movement, he moves one side of a room. This robot has $2$ memories $A,B$. At first, the values of $A,B$ are $0$. In each movement, if he goes up, $1$ unit is added to $A$, and if he goes down, $1$ unit is waned from $A$, and if he goes right, the value of $A$ is added to $B$, and if he goes left, the value of $A$ is waned from $B$. Suppose that the robot has traversed a traverse (!) which hasn’t intersected itself and finally, he has come back to its initial vertex. If $v(B)$ is the value of $B$ in the last of the traverse, prove that in this traverse, the interior surface of the shape that the robot has moved on its circumference is equal to $|v(B)|$.