Let $\triangle{ABC}$ a triangle with $\angle{CAB}=90^{\circ}$ and $L$ a point on the segment $BC$. The circumcircle of triangle $\triangle{ABL}$ intersects $AC$ at $M$ and the circumcircle of triangle $\triangle{CAL}$ intersects $AB$ at $N$. Show that $L$, $M$ and $N$ are collinear.
2011 Preliminary Round - Switzerland
Find all positive integers $n$ such that $n^3$ is the product of all divisors of $n$.
On a blackboard, there are $11$ positive integers. Show that one can choose some (maybe all) of these numbers and place "$+$" and "$-$" in between such that the result is divisible by $2011$.
Given is a circular bus route with $n\geqslant2$ bus stops. The route can be frequented in both directions. The way between two stops is called section and one of the bus stops is called Zürich. A bus shall start at Zürich, pass through all the bus stops at least once and drive along exactly $n+2$ sections before it returns to Zürich in the end. Assuming that the bus can chance directions at each bus stop, how many possible routes are there? EDIT: Sorry, there was a mistake...corrected now, thanks mavropnevma!
Let $ABCD$ an inscribed quadrilateral and $r$ and $s$ the reflections of the straight line through $A$ and $B$ over the inner angle bisectors of angles $\angle{CAD}$ and $\angle{CBD}$, respectively. Let $P$ the point of intersection of $r$ and $s$ and let $O$ the circumcentre of $ABCD$. Prove that $OP \perp CD$.