2024 ELMO Shortlist

Algebra

A1

Let $m,n,a_1,a_2,\dots,a_n$ be positive integers and $r$ be a real number. Prove that the equation \[\lfloor a_1x\rfloor+\lfloor a_2x\rfloor+\cdots+\lfloor a_nx\rfloor=sx+r\]has exactly $ms$ solutions in $x$, where $s=a_1+a_2+\cdots+a_n+\frac1m$. Linus Tang

A2

Let $n$ be a positive integer. Find the number of sequences $a_0,a_1,a_2,\dots,a_{2n}$ of integers in the range $[0,n]$ such that for all integers $0\leq k\leq n$ and all nonnegative integers $m$, there exists an integer $k\leq i\leq 2k$ such that $\lfloor k/2^m\rfloor=a_i.$ Andrew Carratu

A3

Find all functions $f : \mathbb{R}\to\mathbb{R}$ such that for all real numbers $x$ and $y$, $$f(x+f(y))+xy=f(x)f(y)+f(x)+y.$$ Andrew Carratu

A4

The number $2024$ is written on a blackboard. Each second, if there exist positive integers $a,b,k$ such that $a^k+b^k$ is written on the blackboard, you may write $a^{k'}+b^{k'}$ on the blackboard for any positive integer $k'.$ Find all positive integers that you can eventually write on the blackboard. Srinivas Arun

A5

Allen and Alan play a game. A nonconstant polynomial $P(x,y)$ with real coefficients and a positive integer $d$ greater than the degree of $P$ are known to both Allen and Alan. Alan thinks of a polynomial $Q(x,y)$ with real coefficients and degree at most $d$ and keeps it secret. Allen can make queries of the form $(s,t)$, where $s$ and $t$ are real numbers such that $P(s,t)\neq0$. Alan must respond with the value $Q(s,t)$. Allen's goal is to determine whether $P$ divides $Q$. Find (in terms of $P$ and $d$) the smallest positive integer, $g$, such that Allen can always achieve this goal making no more than $g$ queries. Linus Tang

A6

Let $\mathbb R^+$ denote the set of positive real numbers. Find all functions $f:\mathbb R^+\to\mathbb R$ and $g:\mathbb R^+\to\mathbb R$ such that for all $x,y\in\mathbb R^+$, $g(x)-g(y)=(x-y)f(xy)$. Linus Tang

A7

For some positive integer $n,$ Elmo writes down the equation \[x_1+x_2+\dots+x_n=x_1+x_2+\dots+x_n.\]Elmo inserts at least one $f$ to the left side of the equation and adds parentheses to create a valid functional equation. For example, if $n=3,$ Elmo could have created the equation \[f(x_1+f(f(x_2)+x_3))=x_1+x_2+x_3.\]Cookie Monster comes up with a function $f: \mathbb{Q}\to\mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1,\dots,x_n\in\mathbb{Q})$. Is it possible that there is no integer $k$ (possibly depending on $f$) such that $f^k(x)=x$ for all $x$? Srinivas Arun

Combinatorics

C1

Let $n \ge 3$ be a positive integer, and let $S$ be a set of $n$ distinct points in the plane. Call an unordered pair of distinct points ${A,B}$ tasty if there exists a circle passing through $A$ and $B$ not passing through or containing any other point in $S$. Find the maximum number of tasty pairs over all possible sets $S$ of $n$ points. Tiger Zhang

C1.5

Let $m, n \ge 2$ be distinct positive integers. In an infinite grid of unit squares, each square is filled with exactly one real number so that In each $m \times m$ square, the sum of the numbers in the $m^2$ cells is equal. In each $n \times n$ square, the sum of the numbers in the $n^2$ cells is equal. There exist two cells in the grid that do not contain the same number. Let $S$ be the set of numbers that appear in at least one square on the grid. Find, in terms of $m$ and $n$, the least possible value of $|S|$. Kiran Reddy

C2

Let $n$ be a fixed positive integer. Ben is playing a computer game. The computer picks a tree $T$ such that no vertex of $T$ has degree $2$ and such that $T$ has exactly $n$ leaves, labeled $v_1,\ldots, v_n$. The computer then puts an integer weight on each edge of $T$, and shows Ben neither the tree $T$ nor the weights. Ben can ask queries by specifying two integers $1\leq i < j \leq n$, and the computer will return the sum of the weights on the path from $v_i$ to $v_j$. At any point, Ben can guess whether the tree's weights are all zero. He wins the game if he is correct, and loses if he is incorrect. (a) Show that if Ben asks all $\binom n2$ possible queries, then he can guarantee victory. (b) Does Ben have a strategy to guarantee victory in less than $\binom n2$ queries? Brandon Wang

C3

Let $n$ and $k$ be positive integers and $G$ be a complete graph on $n$ vertices. Each edge of $G$ is colored one of $k$ colors such that every triangle consists of either three edges of the same color or three edges of three different colors. Furthermore, there exist two different-colored edges. Prove that $n\le(k-1)^2$. Linus Tang

C4

Let $n \geq 2$ be a positive integer. Let $\mathcal{R}$ be a connected set of unit squares on a grid. A bar is a rectangle of length or width $1$ which is fully contained in $\mathcal{R}$. A bar is special if it is not fully contained within any larger bar. Given that $\mathcal{R}$ contains special bars of sizes $1 \times 2,1 \times 3,\ldots,1 \times n$, find the smallest possible number of unit squares in $\mathcal{R}$. Srinivas Arun

C5

Let $\mathcal{S}$ be a set of $10$ points in a plane that lie within a disk of radius $1$ billion. Define a $move$ as picking a point $P \in \mathcal{S}$ and reflecting it across $\mathcal{S}$'s centroid. Does there always exist a sequence of at most $1500$ moves after which all points of $\mathcal{S}$ are contained in a disk of radius $10$? Advaith Avadhanam

C6

For positive integers $a$ and $b$, an $(a,b)$-shuffle of a deck of $a+b$ cards is any shuffle that preserves the relative order of the top $a$ cards and the relative order of the bottom $b$ cards. Let $n$, $k$, $a_1$, $a_2$, $\dots$, $a_k$, $b_1$, $b_2$, $\dots$, $b_k$ be fixed positive integers such that $a_i+b_i=n$ for all $1\leq i\leq k$. Big Bird has a deck of $n$ cards and will perform an $(a_i,b_i)$-shuffle for each $1\leq i\leq k$, in ascending order of $i$. Suppose that Big Bird can reverse the order of the deck. Prove that Big Bird can also achieve any of the $n!$ permutations of the cards. Linus Tang

C7

Let $n\ge 2$ be a positive integer, and consider an $n\times n$ grid of $n^2$ equilateral triangles. Two triangles are adjacent if they share at least one vertex. Each triangle is colored red or blue, splitting the grid into regions. Find, with proof, the minimum number of triangles in the largest region. Rohan Bodke

C8

Let $n\ge5$ be an integer. A trapezoid with base lengths of $1$ and $r$ is tiled by $n$ (not necessarily congruent) equilateral triangles. In terms of $n$, find the maximum possible value of $r$. Linus Tang

Geometry

G1

In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic. Tiger Zhang

G2

Let $ABC$ be a triangle. Suppose that $D$, $E$, and $F$ are points on segments $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$ respectively such that triangles $AEF$, $BFD$, and $CDE$ have equal inradii. Prove that the sum of the inradii of $\triangle AEF$ and $\triangle DEF$ is equal to the inradius of $\triangle ABC$. Aprameya Tripathy

G3

Let $ABC$ be a triangle, and let $\omega_1,\omega_2$ be centered at $O_1$, $O_2$ and tangent to line $BC$ at $B$, $C$ respectively. Let line $AB$ intersect $\omega_1$ again at $X$ and let line $AC$ intersect $\omega_2$ again at $Y$. If $Q$ is the other intersection of the circumcircles of triangles $ABC$ and $AXY$, then prove that lines $AQ$, $BC$, and $O_1O_2$ either concur or are all parallel. Advaith Avadhanam

G4

In quadrilateral $ABCD$ with incenter $I$, points $W,X,Y,Z$ lie on sides $AB, BC,CD,DA$ with $AZ=AW$, $BW=BX$, $CX=CY$, $DY=DZ$. Define $T=\overline{AC}\cap\overline{BD}$ and $L=\overline{WY}\cap\overline{XZ}$. Let points $O_a,O_b,O_c,O_d$ be such that $\angle O_aZA=\angle O_aWA=90^\circ$ (and cyclic variants), and $G=\overline{O_aO_c}\cap\overline{O_bO_d}$. Prove that $\overline{IL}\parallel\overline{TG}$. Neal Yan

G5

Let $ABC$ be a triangle with circumcenter $O$ and circumcircle $\omega$. Let $D$ be the foot of the altitude from $A$ to $\overline{BC}$. Let $P$ and $Q$ be points on the circumcircles of triangles $AOB$ and $AOC$, respectively, such that $A$, $P$, and $Q$ are collinear. Prove that if the circumcircle of triangle $OPQ$ is tangent to $\omega$ at $T$, then $\angle BTD=\angle CAP$. Tiger Zhang

G6

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. Tiger Zhang

G7

Let $ABC$ be a triangle. Construct rectangles $BA_1A_2C$, $CB_1B_2A$, and $AC_1C_2B$ outside $ABC$ such that $\angle BCA_1=\angle CAB_1=\angle ABC_1$. Let $A_1B_2$ and $A_2C_1$ intersect at $A'$ and define $B',C'$ similarly. Prove that line $AA'$ bisects $B'C'$. Linus Tang

G8

Let $ABC$ be a triangle, and let $D$ be a point on the internal angle bisector of $BAC$. Let $x$ be the ellipse with foci $B$ and $C$ passing through $D$, $y$ be the ellipse with foci $A$ and $C$ passing through $D$, and $z$ be the ellipse with foci $A$ and $B$ passing through $D$. Ellipses $x$ and $z$ intersect at distinct points $D$ and $E$, and ellipses $x$ and $y$ intersect at distinct points $D$ and $F$. Prove that $AD$ bisects angle $EAF$. Andrew Carratu

Number Theory

N1

Find all pairs $(n,d)$ of positive integers such that $d\mid n^2$ and $(n-d)^2<2d$. Linus Tang

N2

Call a positive integer emphatic if it can be written in the form $a^2+b!$, where $a$ and $b$ are positive integers. Prove that there are infinitely many positive integers $n$ such that $n$, $n+1$, and $n+2$ are all emphatic. Allen Wang

N3

Given a positive integer $k$, find all polynomials $P$ of degree $k$ with integer coefficients such that for all positive integers $n$ where all of $P(n)$, $P(2024n)$, $P(2024^2n)$ are nonzero, we have $$\frac{\gcd(P(2024n), P(2024^2n))}{\gcd(P(n), P(2024n))}=2024^k.$$Allen Wang

N4

Find all pairs $(a,b)$ of positive integers such that $a^2\mid b^3+1$ and $b^2\mid a^3+1$. Linus Tang

N5

Let $T$ be a finite set of squarefree integers. (a) Show that there exists an integer polynomial $P(x)$ such that the set of squarefree numbers in the range of $P(n)$ across all $n \in \mathbb{Z}$ is exactly $T$. (b) Suppose that $T$ is allowed to be infinite. Is it still true that for all choices of $T$, such an integer polynomial $P(x)$ exists? Allen Wang

N6

Given a positive integer whose base-$10$ representation is $\overline{d_k\ldots d_0}$ for some integer $k \geq 0$, where $d_k \neq 0$, a move consists of selecting some integers $0 \leq i \leq j \leq k$, such that the digits $d_j,\ldots,d_i$ are not all $0$, erasing them from $n$, and replacing them with a divisor of $\overline{d_j\ldots d_i}$ (this divisor need not have the same number of digits as $\overline{d_j\ldots d_i}$). Prove that for all sufficiently large even integers $n$, we may apply some sequence of moves to $n$ to transform it into $2024$. Allen Wang

N7

For a prime $p$, let $\mathbb{F}_p$ denote the integers modulo $p$, and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in $\mathbb{F}_p$. Find all $p$ for which there exists a quartic polynomial $P(x) \in \mathbb{F}_p[x]$ such that for all integers $k$, there exists some integer $\ell$ such that $P(\ell) \equiv k \pmod p$. (Note that there are $p^4(p-1)$ quartic polynomials in $\mathbb{F}_p[x]$ in total.) Aprameya Tripathy

N8

Let $d(n)$ be the number of divisors of a nonnegative integer $n$ (we set $d(0)=0$). Find all positive integers $d$ such that there exists a two-variable polynomial $P(x,y)$ of degree $d$ with integer coefficients such that: for any positive integer $y$, there are infinitely many positive integers $x$ such that $\gcd(x,y)=1$ and $d(|P(x,y)|) \mid x$, and for any positive integer $x$, there are infinitely many positive integers $y$ such that $\gcd(x,y)=1$ and $d(|P(x,y)|) \mid y$. Allen Wang

N9

Let $P(x)$ be a polynomial with integer coefficients that has at least one rational root. Let $n$ be a positive integer. Alan and Allan are playing a game. First, Alan writes down $n$ integers at $n$ different locations on a board. Then Allan may make moves of the following kind: choose a position that has integer $a$ written, then choose a different position that has integer $b$ written, then at the first position erase $a$ and in its place write $a+P(b)$. After any nonnegative number of moves, Allan may choose to end the game. Once Allan ends the game, his score is the number of times the mode (most common element) of the integers on the board appears. Find, in terms of $P(x)$ and $n$, the maximum score Allan can guarantee. Henrick Rabinovitz