In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic. Tiger Zhang
2024 ELMO Problems
Day 1
For positive integers $a$ and $b$, an $(a,b)$-shuffle of a deck of $a+b$ cards is any shuffle that preserves the relative order of the top $a$ cards and the relative order of the bottom $b$ cards. Let $n$, $k$, $a_1$, $a_2$, $\dots$, $a_k$, $b_1$, $b_2$, $\dots$, $b_k$ be fixed positive integers such that $a_i+b_i=n$ for all $1\leq i\leq k$. Big Bird has a deck of $n$ cards and will perform an $(a_i,b_i)$-shuffle for each $1\leq i\leq k$, in ascending order of $i$. Suppose that Big Bird can reverse the order of the deck. Prove that Big Bird can also achieve any of the $n!$ permutations of the cards. Linus Tang
For some positive integer $n,$ Elmo writes down the equation \[x_1+x_2+\dots+x_n=x_1+x_2+\dots+x_n.\]Elmo inserts at least one $f$ to the left side of the equation and adds parentheses to create a valid functional equation. For example, if $n=3,$ Elmo could have created the equation \[f(x_1+f(f(x_2)+x_3))=x_1+x_2+x_3.\]Cookie Monster comes up with a function $f: \mathbb{Q}\to\mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1,\dots,x_n\in\mathbb{Q})$. Is it possible that there is no integer $k$ (possibly depending on $f$) such that $f^k(x)=x$ for all $x$? Srinivas Arun
Day 2
Let $n$ be a positive integer. Find the number of sequences $a_0,a_1,a_2,\dots,a_{2n}$ of integers in the range $[0,n]$ such that for all integers $0\leq k\leq n$ and all nonnegative integers $m$, there exists an integer $k\leq i\leq 2k$ such that $\lfloor k/2^m\rfloor=a_i.$ Andrew Carratu
In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. Tiger Zhang
For a prime $p$, let $\mathbb{F}_p$ denote the integers modulo $p$, and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in $\mathbb{F}_p$. Find all $p$ for which there exists a quartic polynomial $P(x) \in \mathbb{F}_p[x]$ such that for all integers $k$, there exists some integer $\ell$ such that $P(\ell) \equiv k \pmod p$. (Note that there are $p^4(p-1)$ quartic polynomials in $\mathbb{F}_p[x]$ in total.) Aprameya Tripathy