2023 Belarus Team Selection Test

Test 1

1.1

Let $ABCD$ be a cyclic quadrilateral. Assume that the points $Q, A, B, P$ are collinear in this order, in such a way that the line $AC$ is tangent to the circle $ADQ$, and the line $BD$ is tangent to the circle $BCP$. Let $M$ and $N$ be the midpoints of segments $BC$ and $AD$, respectively. Prove that the following three lines are concurrent: line $CD$, the tangent of circle $ANQ$ at point $A$, and the tangent to circle $BMP$ at point $B$.

1.2

In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. We say that a tree is majestic if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays.

1.3

Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called special if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$. (For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)

Test 2

2.1

Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$

2.2

Let $\mathbb R$ be the set of real numbers. We denote by $\mathcal F$ the set of all functions $f\colon\mathbb R\to\mathbb R$ such that $$f(x + f(y)) = f(x) + f(y)$$for every $x,y\in\mathbb R$ Find all rational numbers $q$ such that for every function $f\in\mathcal F$, there exists some $z\in\mathbb R$ satisfying $f(z)=qz$.

2.3

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

Test 3

3.1

Let $k\ge2$ be an integer. Find the smallest integer $n \ge k+1$ with the property that there exists a set of $n$ distinct real numbers such that each of its elements can be written as a sum of $k$ other distinct elements of the set.

3.2

Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.

3.3

Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called nice if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\]Prove that the number of nice functions is at least $n^n$.

Test 4

4.1

A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$

4.2

Let $ABC$ be a triangle and $\ell_1,\ell_2$ be two parallel lines. Let $\ell_i$ intersects line $BC,CA,AB$ at $X_i,Y_i,Z_i$, respectively. Let $\Delta_i$ be the triangle formed by the line passed through $X_i$ and perpendicular to $BC$, the line passed through $Y_i$ and perpendicular to $CA$, and the line passed through $Z_i$ and perpendicular to $AB$. Prove that the circumcircles of $\Delta_1$ and $\Delta_2$ are tangent.

4.3

Let $n \geqslant 3$ be an integer, and let $x_1,x_2,\ldots,x_n$ be real numbers in the interval $[0,1]$. Let $s=x_1+x_2+\ldots+x_n$, and assume that $s \geqslant 3$. Prove that there exist integers $i$ and $j$ with $1 \leqslant i<j \leqslant n$ such that \[2^{j-i}x_ix_j>2^{s-3}.\]