As shown in figure , $\odot O$ is the inscribed circle of trapezoid $ABCD$, and the tangent points are $E, F, G, H$, $AB \parallel CD$. The line passing through$ B$, parallel to $AD$ intersects extension of $DC$ at point $P$. The extension of $AO$ intersects $CP$ at point $Q$. If $AE=BE$ , prove that $\angle CBQ = \angle PBQ$.
2008 China Northern MO
Day 1
In $\triangle ABC$ , prove that\[\frac{tan\frac{A}{2}+tan\frac{B}{2}+tan\frac{C}{2}}{\sqrt{3}}\geq\sqrt[6]{tan^2\frac{A}{2}+tan^2\frac{B}{2}+tan^2\frac{C}{2}}.\]
The given triangular number table is as follows: Among them, the numbers in the first row are $1, 2, 3, ..., 98, 99, 100$. Starting from the second row, each number is equal to the sum of the left and right numbers in the row above it. Find the value of $M$.
Prove that: (1) There are infinitely many positive integers $n$ such that the largest prime factor of $n^2+1$ is less than $n.$ (2) There are infinitely many positive integers $n$ such that $n^2+1$ divides $n!$.
Day 2
As shown in figure , it is known that $ABCD$ is parallelogram, $A,B,C$ lie on circle $\odot O_1$, $AD$ and $BD$ intersect $\odot O$ at points $E$ and $F$ respectively, $C,D,F$ lie on circle $\odot O_2$, $AD$ intersects $\odot O_2$ at point $G$. If the radii of circles $\odot O_1$, $\odot O_2$ are $R_1, R_2$ respectively, prove that $\frac{EG}{AD}=\frac{R_2^2}{R_1^2}$.
Assume $n$ is a positive integer and integer $a$ is the root of the equation $$x^4+3ax^2+2ax-2\times 3^n=0.$$Find all $n$ and $ a$ that satisfy the conditions.
Let $a, b, c$ be side lengths of a right triangle and $c$ be the length of the hypotenuse .Find the minimum value of $\frac{a^3+b^3+c^3}{abc}$.
Given an equilateral triangle lattice composed of $\frac{n(n+1)}{2}$ points (as shown in the figure), record the number of equilateral triangles with three points in the lattice as vertices as $f(n)$. Find an expression for $f(n)$.