In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.
1976 IMO
Day 1
Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.
A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.
Day 2
Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is $1976.$
We consider the following system with $q=2p$: \[\begin{matrix} a_{11}x_{1}+\ldots+a_{1q}x_{q}=0,\\ a_{21}x_{1}+\ldots+a_{2q}x_{q}=0,\\ \ldots ,\\ a_{p1}x_{1}+\ldots+a_{pq}x_{q}=0,\\ \end{matrix}\] in which every coefficient is an element from the set $\{-1,0,1\}$$.$ Prove that there exists a solution $x_{1}, \ldots,x_{q}$ for the system with the properties: a.) all $x_{j}, j=1,\ldots,q$ are integers$;$ b.) there exists at least one j for which $x_{j} \neq 0;$ c.) $|x_{j}| \leq q$ for any $j=1, \ldots ,q.$
A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where $[x]$ denotes the smallest integer $\leq x)$