2024 Romania National Olympiad

Grade 9

1

The points $D$ and $E$ lie on the side $(BC)$ of the triangle $ABC$ such that $D$ is between $B$ and $E.$ A point $R$ on the segment $(AE)$ is called remarkable if the lines $PQ$ and $BC$ are parallel, where $\{P\}=DR \cap AC$ and $\{Q\}=CR \cap AB.$ A point $R'$ on the segment $(AD)$ is called remarkable if the lines $P'Q'$ and $BC$ are parallel, where $\{P'\}=BR' \cap AC$ and $\{Q'\}=ER' \cap AB.$ a) If there exists a remarkable point on the segment $(AE),$ prove that any point of the segment $(AE)$ is remarkable. b) If each of the segments $(AD)$ and $(AE)$ contains a remarkable point, prove that $BD=CE=\varphi \cdot DE,$ where $\varphi= \frac{1+\sqrt{5}}{2}$ is the golden ratio.

2

Let $a$ and $b$ be two numbers in the interval $(0,1)$ such that $a$ is rational and $\{na\} \ge \{nb\},$ for every nonnegative integer $n.$ Prove that $a=b.$ (Note: $\{x\}$ is the fractional part of $x.$)

3

Find the functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy $$(f(x)-y)f(x+f(y))=f(x^2)-yf(y),$$for all real numbers $x$ and $y.$

4

Let $a$ be a given positive integer. We consider the sequence $(x_n)_{n \ge 1}$ defined by $x_n=\frac{1}{1+na},$ for every positive integer $n.$ Prove that for any integer $k \ge 3,$ there exist positive integers $n_1<n_2<\ldots<n_k$ such that the numbers $x_{n_1},x_{n_2},\ldots,x_{n_k}$ are consecutive terms in an arithmetic progression.

Grade 10

1

Solve over the real numbers the equation $$3^{\log_5(5x-10)}-2=5^{-1+\log_3x}.$$

2

We consider the inscriptible pentagon $ABCDE$ in which $AB=BC=CD$ and the centroid of the pentagon coincides with the circumcenter. Prove that the pentagon $ABCDE$ is regular. The centroid of a pentagon is the point in the plane of the pentagon whose position vector is equal to the average of the position vectors of the vertices.

3

Let $n \ge 2$ be a positive integer and $\mathcal{F}$ the set of functions $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ that satisfy $f(k) \le f(k+1) \le f(k)+1,$ for all $k \in \{1,2,\ldots,n-1\}.$ a) Find the cardinal of the set $\mathcal{F}.$ b) Find the total number of fixed points of the functions in $\mathcal{F}.$

4

We consider an integer $n \ge 3,$ the set $S=\{1,2,3,\ldots,n\}$ and the set $\mathcal{F}$ of the functions from $S$ to $S.$ We say that $\mathcal{G} \subset \mathcal{F}$ is a generating set for $\mathcal{H} \subset \mathcal{F}$ if any function in $\mathcal{H}$ can be represented as a composition of functions from $\mathcal{G}.$ a) Let the functions $a:S \to S,$ $a(n-1)=n,$ $a(n)=n-1$ and $a(k)=k$ for $k \in S \setminus \{n-1,n\}$ and $b:S \to S,$ $b(n)=1$ and $b(k)=k+1$ for $k \in S \setminus \{n\}.$ Prove that $\{a,b\}$ is a generating set for the set $\mathcal{B}$ of bijective functions of $\mathcal{F}.$ b) Prove that the smallest number of elements that a generating set of $\mathcal{F}$ has is $3.$

Grade 11

1

Let $I \subset \mathbb{R}$ be an open interval and $f:I \to \mathbb{R}$ a twice differentiable function such that $f(x)f''(x)=0,$ for any $x \in I.$ Prove that $f''(x)=0,$ for any $x \in I.$

2

Let $A \in \mathcal{M}_n(\mathbb{R})$ be an invertible matrix. a) Prove that the eigenvalues of $AA^T$ are positive real numbers. b) We assume that there are two distinct positive integers, $p$ and $q$, such that $(AA^T)^p=(A^TA)^q.$ Prove that $A^T=A^{-1}.$

3

Let $A,B \in \mathcal{M}_n(\mathbb{R}).$ We consider the function $f:\mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}),$ defined by $f(Z)=AZ+B\overline{Z},$ $Z \in \mathcal{M}_n(\mathbb{C}),$ where $\overline{Z}$ is the matrix whose entries are the conjugates of the corresponding entries of $Z.$ Prove that the following statements are equivalent: $(1)$ the function $f$ is injective; $(2)$ the function $f$ is surjective; $(3)$ the matrices $A+B$ and $A-B$ are invertible.

4

Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions with $g(x)=2f(x)+f(x^2),$ for all $x \in \mathbb{R}.$ a) Prove that, if $f$ is bounded in a neighbourhood of the origin and $g$ is continuous in the origin, then $f$ is continuous in the origin. b) Provide an example of function $f$, discontinuous in the origin, for which the function $g$ is continuous in the origin.

Grade 12

1

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x)+\sin(f(x)) \ge x,$ for all $x \in \mathbb{R}.$ Prove that $$\int\limits_0^{\pi} f(x) \mathrm{d}x \ge \frac{\pi^2}{2}-2.$$

2

Let $(\mathbb{K},+, \cdot)$ be a division ring in which $x^2y=yx^2,$ for all $x,y \in \mathbb{K}.$ Prove that $(\mathbb{K},+, \cdot)$ is commutative.

3

Let $f:[0,1] \to \mathbb{R}$ be a continuous function with $f(1)=0.$ Prove that the limit $$\lim_{t \nearrow 1} \left( \frac{1}{1-t} \int\limits_0^1x(f(tx)-f(x)) \mathrm{d}x\right)$$exists and find its value.

4

Let $\mathbb{L}$ be a finite field with $q$ elements. Prove that: a) If $q \equiv 3 \pmod 4$ and $n \ge 2$ is a positive integer divisible by $q-1,$ then $x^n=(x^2+1)^n$ for all $x \in \mathbb{L}^{\times}.$ b) If there exists a positive integer $n \ge 2$ such that $x^n=(x^2+1)^n$ for all $x \in \mathbb{L}^{\times},$ then $q \equiv 3 \pmod 4$ and $q-1$ divides $n.$