Does there exist a positive integer, $x$, such that $(x+2)^{2023}-x^{2023}$ has exactly $2023^{2023}$ factors? Proposed by Wong Jer Ren
2023 Malaysian IMO Training Camp
Junior Olympiad of Malaysia 2023
February 18, 2023
Ruby has a non-negative integer $n$. In each second, Ruby replaces the number she has with the product of all its digits. Prove that Ruby will eventually have a single-digit number or $0$. (e.g. $86\rightarrow 8\times 6=48 \rightarrow 4 \times 8 =32 \rightarrow 3 \times 2=6$) Proposed by Wong Jer Ren
Given an acute triangle $ABC$ with $AB<AC$, let $D$ be the foot of altitude from $A$ to $BC$ and let $M\neq D$ be a point on segment $BC$.$\,J$ and $K$ lie on $AC$ and $AB$ respectively such that $K,J,M$ lies on a common line perpendicular to $BC$. Let the circumcircles of $\triangle ABJ$ and $\triangle ACK$ intersect at $O$. Prove that $J,O,M$ are collinear if and only if $M$ is the midpoint of $BC$. Proposed by Wong Jer Ren
Given $n$ positive real numbers $x_1,x_2,x_3,...,x_n$ such that $$\left (1+\frac{1}{x_1}\right )\left(1+\frac{1}{x_2}\right)...\left(1+\frac{1}{x_n}\right)=(n+1)^n$$Determine the minimum value of $x_1+x_2+x_3+...+x_n$. Proposed by Loh Kwong Weng
Given a $m \times n$ rectangle where $m,n\geq 2023$. The square in the $i$-th row and $j$-th column is filled with the number $i+j$ for $1\leq i \leq m, 1\leq j \leq n$. In each move, Alice can pick a $2023 \times 2023$ subrectangle and add $1$ to each number in it. Alice wins if all the numbers are multiples of $2023$ after a finite number of moves. For which pairs $(m,n)$ can Alice win? Proposed by Boon Qing Hong
APMO Camp Selection Test 2023
February 18, 2023
For which $n\ge 3$ does there exist positive integers $a_1<a_2<\cdots <a_n$, such that: $$a_n=a_1+...+a_{n-1}, \hspace{0.5cm} \frac{1}{a_1}=\frac{1}{a_2}+...+\frac{1}{a_n}$$are both true? Proposed by Ivan Chan Kai Chin
Ivan is playing Lego with $4n^2$ $1 \times 2$ blocks. First, he places $2n^2$ $1 \times 2$ blocks to fit a $2n \times 2n$ square as the bottom layer. Then he builds the top layer on top of the bottom layer using the remaining $2n^2$ $1 \times 2$ blocks. Note that the blocks in the bottom layer are connected to the blocks above it in the top layer, just like real Lego blocks. He wants the whole two-layered building to be connected and not in seperate pieces. Prove that if he can do so, then the four $1\times 2$ blocks connecting the four corners of the bottom layer, must be all placed horizontally or all vertically. Proposed by Ivan Chan Kai Chin
Let triangle $ABC$ with $AB<AC$ has orthocenter $H$, and let the midpoint of $BC$ be $M$. The internal angle bisector of $\angle BAC$ meet $CH$ at $X$, and the external angle bisector of $\angle BAC$ meet $BH$ at $Y$. The circles $(BHX)$ and $(CHY)$ meet again at $Z$. Prove that $\angle HZM=90^{\circ}$. Proposed by Ivan Chan Kai Chin
Let $k$ be a fixed integer. In the town of Ivanland, there are at least $k+1$ citizens standing on a plane such that the distances between any two citizens are distinct. An election is to be held such that every citizen votes the $k$-th closest citizen to be the president. What is the maximal number of votes a citizen can have? Proposed by Ivan Chan Kai Chin
Let $n\ge 3$, $d$ be positive integers. For an integer $x$, denote $r(x)$ be the remainder of $x$ when divided by $n$ such that $0\le r(x)\le n-1$. Let $c$ be a positive integer with $1<c<n$ and $\gcd(c,n)=1$, and suppose $a_1, \cdots, a_d$ are positive integers with $a_1+\cdots+a_d\le n-1$. (a) Prove that if $n<2d$, then $\displaystyle\sum_{i=1}^d r(ca_i)\ge n.$ (b) For each $n$, find the smallest $d$ such that $\displaystyle\sum_{i=1}^d r(ca_i)\ge n$ always holds. Proposed by Yeoh Zi Song & Anzo Teh Zhao Yang
IMO Team Selection Test 2023
Day 1, April 29, 2023
Let $P$ be a cyclic polygon with circumcenter $O$ that does not lie on any diagonal, and let $S$ be the set of points on 2D plane containing $P$ and $O$. The $\textit{Matcha Sweep Game}$ is a game between two players $A$ and $B$, with $A$ going first, such that each choosing a nonempty subset $T$ of points in $S$ that has not been previously chosen, and such that if $T$ has at least $3$ vertices then $T$ forms a convex polygon. The game ends with all points have been chosen, with the player picking the last point wins. For which polygons $P$ can $A$ guarantee a win? Proposed by Anzo Teh Zhao Yang
Let $a_1, a_2, \cdots, a_n$ be a sequence of real numbers with $a_1+a_2+\cdots+a_n=0$. Define the score $S(\sigma)$ of a permutation $\sigma=(b_1, \cdots b_n)$ of $(a_1, \cdots a_n)$ to be the minima of the sum $$(x_1-b_1)^2+\cdots+(x_n-b_n)^2$$over all real numbers $x_1\le \cdots \le x_n$. Prove that $S(\sigma)$ attains the maxima over all permutations $\sigma$, if and only if for all $1\le k\le n$, $$b_1+b_2+\cdots+b_k\ge 0.$$ Proposed by Anzo Teh Zhao Yang
Let $ABC$ be an acute triangle with $AB\neq AC$. Let $D, E, F$ be the midpoints of the sides $BC$, $CA$, and $AB$ respectively, and $M, N$ be the midpoints of minor arc $BC$ not containing $A$ and major arc $BAC$ respectively. Suppose $W, X, Y, Z$ are the incenter, $D$-excenter, $E$-excenter, and $F$-excenter of triangle $DEF$ respectively. Prove that the circumcircles of the triangles $ABC$, $WNX$, $YMZ$ meet at a common point. Proposed by Ivan Chan Kai Chin
Day 2, April 30, 2023
Do there exist infinitely many triples of positive integers $(a, b, c)$ such that $a$, $b$, $c$ are pairwise coprime, and $a! + b! + c!$ is divisible by $a^2 + b^2 + c^2$? Proposed by Anzo Teh Zhao Yang
Let $ABCD$ be a cyclic quadrilateral, with circumcircle $\omega$ and circumcenter $O$. Let $AB$ intersect $CD$ at $E$, $AD$ intersect $BC$ at $F$, and $AC$ intersect $BD$ at $G$. The points $A_1, B_1, C_1, D_1$ are chosen on rays $GA$, $GB$, $GC$, $GD$ such that: $\bullet$ $\displaystyle \frac{GA_1}{GA} = \frac{GB_1}{GB} = \frac{GC_1}{GC} = \frac{GD_1}{GD}$ $\bullet$ The points $A_1, B_1, C_1, D_1, O$ lie on a circle. Let $A_1B_1$ intersect $C_1D_1$ at $K$, and $A_1D_1$ intersect $B_1C_1$ at $L$. Prove that the image of the circle $(A_1B_1C_1D_1)$ under inversion about $\omega$ is a line passing through the midpoints of $KE$ and $LF$. Proposed by Anzo Teh Zhao Yang & Ivan Chan Kai Chin
Suppose there are $n$ points on the plane, no three of which are collinear. Draw $n-1$ non-intersecting segments (except possibly at endpoints) between pairs of points, such that it is possible to travel between any two points by travelling along the segments. Such a configuration of points and segments is called a network. Given a network, we may assign labels from $1$ to $n-1$ to each segment such that each segment gets a different label. Define a spin as the following operation: $\bullet$ Choose a point $v$ and rotate the labels of its adjacent segments clockwise. Formally, let $e_1,e_2,\cdots,e_k$ be the segments which contain $v$ as an endpoint, sorted in clockwise order (it does not matter which segment we choose as $e_1$). Then, the label of $e_{i+1}$ is replaced with the label of $e_{i}$ simultaneously for all $1 \le i \le k$. (where $e_{k+1}=e_{1}$) A network is nontrivial if there exists at least $2$ points with at least $2$ adjacent segments each. A network is versatile if any labeling of its segments can be obtained from any initial labeling using a finite amount of spins. Find all integers $n \ge 5$ such that any nontrivial network with $n$ points is versatile. Proposed by Yeoh Zi Song
Malaysian Squad Selection Test 2023
Day 1, August 26, 2023
Ivan has a $m \times n$ board, and he color some squares black, so that no three black squares form a L-triomino up to rotations and reflections. What is the maximal number of black squares that Ivan can color? Proposed by Ivan Chan Kai Chin
Let $ABC$ be a triangle with orthocenter $H$. Let $\ell_b, \ell_c$ be the reflection of lines $AB$ and $AC$ about $AH$ respectively. Suppose $\ell_b$ intersect $CH$ at $P$, and $\ell_c$ intersect $BH$ at $Q$. Prove that $AH, PQ, BC$ are concurrent. Proposed by Ivan Chan Kai Chin
A sequence of reals $a_1, a_2, \cdots$ satisfies for all $m>1$, $$a_{m+1}a_{m-1}=a_m^2-a_1^2$$Prove that for all $m>n>1$, the sequence satisfies the equation $$a_{m+n}a_{m-n}=a_m^2-a_n^2$$ Proposed by Ivan Chan Kai Chin
Find the largest constant $c>0$ such that for every positive integer $n\ge 2$, there always exist a positive divisor $d$ of $n$ such that $$d\le \sqrt{n}\hspace{0.5cm} \text{and} \hspace{0.5cm} \tau(d)\ge c\sqrt{\tau(n)}$$where $\tau(n)$ is the number of divisors of $n$. Proposed by Mohd. Suhaimi Ramly
Day 2, August 27, 2023
Find the maximal value of $c>0$ such that for any $n\ge 1$, and for any $n$ real numbers $x_1, \cdots, x_n$ there exists real numbers $a ,b$ such that $$\{x_i-a\}+\{x_{i+1}-b\}\le \frac{1}{2024}$$for at least $cn$ indices $i$. Here, $x_{n+1}=x_1$ and $\{x\}$ denotes the fractional part of $x$. Proposed by Wong Jer Ren
Given a cyclic quadrilateral $ABCD$ with circumcenter $O$, let the circle $(AOD)$ intersect the segments $AB$, $AC$, $DB$, $DC$ at $P$, $Q$, $R$, $S$ respectively. Suppose $X$ is the reflection of $D$ about $PQ$ and $Y$ is the reflection of $A$ about $RS$. Prove that the circles $(AOD)$, $(BPX)$, $(CSY)$ meet at a common point. Proposed by Leia Mayssa & Ivan Chan Kai Chin
Find all polynomials with integer coefficients $P$ such that for all positive integers $n$, the sequence $$0, P(0), P(P(0)), \cdots$$is eventually constant modulo $n$. Proposed by Ivan Chan Kai Chin
Given two positive integers $m$ and $n$, find the largest $k$ in terms of $m$ and $n$ such that the following condition holds: Any tree graph $G$ with $k$ vertices has two (possibly equal) vertices $u$ and $v$ such that for any other vertex $w$ in $G$, either there is a path of length at most $m$ from $u$ to $w$, or there is a path of length at most $n$ from $v$ to $w$. Proposed by Ivan Chan Kai Chin