Determine all triples $(k, m, n) $ of positive integers satisfying $$k!+m!=k!n!.$$
2024 Australian Mathematical Olympiad
1 - day
Let $ABCD$ be a cyclic quadrilateral. Point $P$ is on line $CB$ such that $CP=CA$and $B$ lies between $C$ and $P$. Point $Q$ is on line $CD$ such that $CQ=CA$ and $D$ lies between $C$ and $Q$. Prove that the incentre of triangle $ABD$ lies on line $PQ.$
Let $a_1, a_2, \ldots, a_n$ be positive reals for $n \geq 2$. For a permutation $(b_1, b_2, \ldots, b_n)$ of $(a_1, a_2, \ldots, a_n)$, define its $\textit{score}$ to be $$\sum_{i=1}^{n-1}\frac{b_i^2}{b_{i+1}}.$$Show that some two permutations of $(a_1, a_2, \ldots, a_n)$ have scores that differ by at most $3|a_1-a_n|$.
Consider a $2024 \times 2024$ grid of unit squares. Two distinct unit squares are adjacent if they share a common side. Each unit square is to be coloured either black or white. Such a colouring is called $\textit{evenish}$ if every unit square in the grid is adjacent to an even number of black unit squares. Determine the number of $\textit{evenish}$ colourings.
2 - day
The sequence of positive integers $a_1, a_2, \ldots, a_{2025}$ is defined as follows: $a_1=2^{2024}+1$ and $a_{n+1}$ is the greatest prime factor of $a_n^2-1$ for $1 \leq n \leq 2024$. Find the value of $a_{2024}+a_{2025}$.
In a school, there are $1000$ students in each year level, from Year $1$ to Year $12$. The school has $12 000$ lockers, numbered from $1$ to $12 000$. The school principal requests that each student is assigned their own locker, so that the following condition is satisfied: For every pair of students in the same year level, the difference between their locker numbers must be divisible by their year-level number. Can the principal’s request be satisfied?
Let $ABCD$ be a square and let $P$ be a point on side $AB$. The point $Q$ lies outside the square such that $\angle ABQ = \angle ADP$ and $\angle AQB = 90^{\circ}$. The point $R$ lies on the side $BC$ such that $\angle BAR = \angle ADQ$. Prove that the lines $AR, CQ$ and $DP$ pass through a common point.
Let $r=0.d_0d_1d_2\ldots$ be a real number. Let $e_n$ denote the number formed by the digits $d_n, d_{n-1}, \ldots, d_0$ written from left to right (leading zeroes are permitted). Given that $d_0=6$ and for each $n \geq 0$, $e_n$ is equal to the number formed by the $n+1$ rightmost digits of $e_n^2$. Show that $r$ is irrational.