2024 Romanian Master of Mathematics

February 28 - Day 1

1

Let $n$ be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$ chessboard; those bishops are numbered from $1$ to $2^n$ from left to right. A jump is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row. Find the total number of permutations $\sigma$ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right. Israel

2

Consider an odd prime $p$ and a positive integer $N < 50p$. Let $a_1, a_2, \ldots , a_N$ be a list of positive integers less than $p$ such that any specific value occurs at most $\frac{51}{100}N$ times and $a_1 + a_2 + \cdots· + a_N$ is not divisible by $p$. Prove that there exists a permutation $b_1, b_2, \ldots , b_N$ of the $a_i$ such that, for all $k = 1, 2, \ldots , N$, the sum $b_1 + b_2 + \cdots + b_k$ is not divisible by $p$. Will Steinberg, United Kingdom

3

Given a positive integer $n$, a collection $\mathcal{S}$ of $n-2$ unordered triples of integers in $\{1,2,\ldots,n\}$ is $n$-admissible if for each $1 \leq k \leq n - 2$ and each choice of $k$ distinct $A_1, A_2, \ldots, A_k \in \mathcal{S}$ we have $$ \left|A_1 \cup A_2 \cup \cdots A_k \right| \geq k+2.$$Is it true that for all $n > 3$ and for each $n$-admissible collection $\mathcal{S}$, there exist pairwise distinct points $P_1, \ldots , P_n$ in the plane such that the angles of the triangle $P_iP_jP_k$ are all less than $61^{\circ}$ for any triple $\{i, j, k\}$ in $\mathcal{S}$? Ivan Frolov, Russia

February 29 - Day 2

4

Fix integers $a$ and $b$ greater than $1$. For any positive integer $n$, let $r_n$ be the (non-negative) remainder that $b^n$ leaves upon division by $a^n$. Assume there exists a positive integer $N$ such that $r_n < \frac{2^n}{n}$ for all integers $n\geq N$. Prove that $a$ divides $b$. Pouria Mahmoudkhan Shirazi, Iran

5

Let $BC$ be a fixed segment in the plane, and let $A$ be a variable point in the plane not on the line $BC$. Distinct points $X$ and $Y$ are chosen on the rays $CA^\to$ and $BA^\to$, respectively, such that $\angle CBX = \angle YCB = \angle BAC$. Assume that the tangents to the circumcircle of $ABC$ at $B$ and $C$ meet line $XY$ at $P$ and $Q$, respectively, such that the points $X$, $P$, $Y$ and $Q$ are pairwise distinct and lie on the same side of $BC$. Let $\Omega_1$ be the circle through $X$ and $P$ centred on $BC$. Similarly, let $\Omega_2$ be the circle through $Y$ and $Q$ centred on $BC$. Prove that $\Omega_1$ and $\Omega_2$ intersect at two fixed points as $A$ varies. Daniel Pham Nguyen, Denmark

6

A polynomial $P$ with integer coefficients is square-free if it is not expressible in the form $P = Q^2R$, where $Q$ and $R$ are polynomials with integer coefficients and $Q$ is not constant. For a positive integer $n$, let $P_n$ be the set of polynomials of the form $$1 + a_1x + a_2x^2 + \cdots + a_nx^n$$with $a_1,a_2,\ldots, a_n \in \{0,1\}$. Prove that there exists an integer $N$ such that for all integers $n \geq N$, more than $99\%$ of the polynomials in $P_n$ are square-free. Navid Safaei, Iran