2010 Stars Of Mathematics

1

Let $D$ be the set of all pairs $(i,j)$, $1\le i,j\le n$. Prove there exists a subset $S \subset D$, with $|S|\ge\left \lfloor\frac{3n(n+1)}{5}\right \rfloor$, such that for any $(x_1,y_1), (x_2,y_2) \in S$ we have $(x_1+x_2,y_1+y_2) \not \in S$. (Peter Cameron)

2

Let $ABCD$ be a square and let the points $M$ on $BC$, $N$ on $CD$, $P$ on $DA$, be such that $\angle (AB,AM)=x,\angle (BC,MN)=2x,\angle (CD,NP)=3x$. 1) Show that for any $0\le x\le 22.5$, such a configuration uniquely exists, and that $P$ ranges over the whole segment $DA$; 2) Determine the number of angles $0\le x\le 22.5$ for which$\angle (DA,PB)=4x$. (Dan Schwarz)

3

Find the largest constant $K>0$ such that for any $0\le k\le K$ and non-negative reals $a,b,c$ satisfying $a^2+b^2+c^2+kabc=k+3$ we have $a+b+c\le 3$. (Dan Schwarz)

4

Let $a,b,c$ be given positive integers. Prove that there exists some positive integer $N$ such that \[ a\mid Nbc+b+c,\ b\mid Nca+c+a,\ c\mid Nab+a+b \] if and only if, denoting $d=\gcd(a,b,c)$ and $a=dx$, $b=dy$, $c=dz$, the positive integers $x,y,z$ are pairwise coprime, and also $\gcd(d,xyz) \mid x+y+z$. (Dan Schwarz)