2015 International Zhautykov Olympiad

Day 1

1

Each point with integral coordinates in the plane is coloured white or blue. Prove that one can choose a colour so that for every positive integer $ n $ there exists a triangle of area $ n $ having its vertices of the chosen colour.

2

Inside the triangle $ ABC $ a point $ M $ is given. The line $ BM $ meets the side $ AC $ at $ N $. The point $ K $ is symmetrical to $ M $ with respect to $ AC $. The line $ BK $ meets $ AC $ at $ P $. If $ \angle AMP = \angle CMN $, prove that $ \angle ABP=\angle CBN $.

3

Find all functions $ f\colon \mathbb{R} \to \mathbb{R} $ such that $ f(x^3+y^3+xy)=x^2f(x)+y^2f(y)+f(xy) $, for all $ x,y \in \mathbb{R} $.

Day 2

1

Determine the maximum integer $ n $ such that for each positive integer $ k \le \frac{n}{2} $ there are two positive divisors of $ n $ with difference $ k $.

2

Let $ A_n $ be the set of partitions of the sequence $ 1,2,..., n $ into several subsequences such that every two neighbouring terms of each subsequence have different parity,and $ B_n $ the set of partitions of the sequence $ 1,2,..., n $ into several subsequences such that all the terms of each subsequence have the same parity ( for example,the partition $ {(1,4,5,8),(2,3),(6,9),(7)} $ is an element of $ A_9 $,and the partition $ {(1,3,5),(2,4),(6)} $ is an element of $ B_6 $ ). Prove that for every positive integer $ n $ the sets $ A_n $ and $ B_{n+1} $ contain the same number of elements.

3

The area of a convex pentagon $ABCDE$ is $S$, and the circumradii of the triangles $ABC$, $BCD$, $CDE$, $DEA$, $EAB$ are $R_1$, $R_2$, $R_3$, $R_4$, $R_5$. Prove the inequality \[ R_1^4+R_2^4+R_3^4+R_4^4+R_5^4\geq {4\over 5\sin^2 108^\circ}S^2. \]