For $ a_i \in \mathbb{Z}^ +$, $ i = 1, \ldots, k$, and $ n = \sum^k_{i = 1} a_i$, let $ d = \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$. Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i = 1} (a_i!)}$ is an integer. Dan Schwarz, Romania
2009 Romanian Master of Mathematics
February 28 - Date
A set $ S$ of points in space satisfies the property that all pairwise distances between points in $ S$ are distinct. Given that all points in $ S$ have integer coordinates $ (x,y,z)$ where $ 1 \leq x,y, z \leq n,$ show that the number of points in $ S$ is less than $ \min \Big((n + 2)\sqrt {\frac {n}{3}}, n \sqrt {6}\Big).$ Dan Schwarz, Romania
Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that \[ A_1A_2 \cdot A_3 A_4 = A_1 A_3 \cdot A_2 A_4 = A_1 A_4 \cdot A_2 A_3, \] denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} = \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel. Nikolai Ivanov Beluhov, Bulgaria
For a finite set $ X$ of positive integers, let $ \Sigma(X) = \sum_{x \in X} \arctan \frac{1}{x}.$ Given a finite set $ S$ of positive integers for which $ \Sigma(S) < \frac{\pi}{2},$ show that there exists at least one finite set $ T$ of positive integers for which $ S \subset T$ and $ \Sigma(S) = \frac{\pi}{2}.$ Kevin Buzzard, United Kingdom