For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.
2013 Romanian Master of Mathematics
March 1 - Day 1
Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.
March 2 - Day 2
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
Given a positive integer $k\geq2$, set $a_1=1$ and, for every integer $n\geq 2$, let $a_n$ be the smallest solution of equation \[x=1+\sum_{i=1}^{n-1}\left\lfloor\sqrt[k]{\frac{x}{a_i}}\right\rfloor\] that exceeds $a_{n-1}$. Prove that all primes are among the terms of the sequence $a_1,a_2,\ldots$
A token is placed at each vertex of a regular $2n$-gon. A move consists in choosing an edge of the $2n$-gon and swapping the two tokens placed at the endpoints of that edge. After a finite number of moves have been performed, it turns out that every two tokens have been swapped exactly once. Prove that some edge has never been chosen.