Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .
2018 Romanian Master of Mathematics
February 23 - Day 1
Determine whether there exist non-constant polynomials $P(x)$ and $Q(x)$ with real coefficients satisfying $$P(x)^{10}+P(x)^9 = Q(x)^{21}+Q(x)^{20}.$$
Ann and Bob play a game on the edges of an infinite square grid, playing in turns. Ann plays the first move. A move consists of orienting any edge that has not yet been given an orientation. Bob wins if at any point a cycle has been created. Does Bob have a winning strategy?
February 24 - Day 2
Let $a,b,c,d$ be positive integers such that $ad \neq bc$ and $gcd(a,b,c,d)=1$. Let $S$ be the set of values attained by $\gcd(an+b,cn+d)$ as $n$ runs through the positive integers. Show that $S$ is the set of all positive divisors of some positive integer.
Let $n$ be positive integer and fix $2n$ distinct points on a circle. Determine the number of ways to connect the points with $n$ arrows (oriented line segments) such that all of the following conditions hold: each of the $2n$ points is a startpoint or endpoint of an arrow; no two arrows intersect; and there are no two arrows $\overrightarrow{AB}$ and $\overrightarrow{CD}$ such that $A$, $B$, $C$ and $D$ appear in clockwise order around the circle (not necessarily consecutively).
Fix a circle $\Gamma$, a line $\ell$ to tangent $\Gamma$, and another circle $\Omega$ disjoint from $\ell$ such that $\Gamma$ and $\Omega$ lie on opposite sides of $\ell$. The tangents to $\Gamma$ from a variable point $X$ on $\Omega$ meet $\ell$ at $Y$ and $Z$. Prove that, as $X$ varies over $\Omega$, the circumcircle of $XYZ$ is tangent to two fixed circles.