2017 Romanian Master of Mathematics

February 24 - Day 1

1

(a) Prove that every positive integer $n$ can be written uniquely in the form \[n=\sum_{j=1}^{2k+1}(-1)^{j-1}2^{m_j},\]where $k\geq 0$ and $0\le m_1<m_2\cdots <m_{2k+1}$ are integers. This number $k$ is called weight of $n$. (b) Find (in closed form) the difference between the number of positive integers at most $2^{2017}$ with even weight and the number of positive integers at most $2^{2017}$ with odd weight.

2

Determine all positive integers $n$ satisfying the following condition: for every monic polynomial $P$ of degree at most $n$ with integer coefficients, there exists a positive integer $k\le n$ and $k+1$ distinct integers $x_1,x_2,\cdots ,x_{k+1}$ such that \[P(x_1)+P(x_2)+\cdots +P(x_k)=P(x_{k+1})\]. Note. A polynomial is monic if the coefficient of the highest power is one.

3

Let $n$ be an integer greater than $1$ and let $X$ be an $n$-element set. A non-empty collection of subsets $A_1, ..., A_k$ of $X$ is tight if the union $A_1 \cup \cdots \cup A_k$ is a proper subset of $X$ and no element of $X$ lies in exactly one of the $A_i$s. Find the largest cardinality of a collection of proper non-empty subsets of $X$, no non-empty subcollection of which is tight. Note. A subset $A$ of $X$ is proper if $A\neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.

February 25 - Day 2

4

In the Cartesian plane, let $G_1$ and $G_2$ be the graphs of the quadratic functions $f_1(x) = p_1x^2 + q_1x + r_1$ and $f_2(x) = p_2x^2 + q_2x + r_2$, where $p_1 > 0 > p_2$. The graphs $G_1$ and $G_2$ cross at distinct points $A$ and $B$. The four tangents to $G_1$ and $G_2$ at $A$ and $B$ form a convex quadrilateral which has an inscribed circle. Prove that the graphs $G_1$ and $G_2$ have the same axis of symmetry.

5

Fix an integer $n \geq 2$. An $n\times n$ sieve is an $n\times n$ array with $n$ cells removed so that exactly one cell is removed from every row and every column. A stick is a $1\times k$ or $k\times 1$ array for any positive integer $k$. For any sieve $A$, let $m(A)$ be the minimal number of sticks required to partition $A$. Find all possible values of $m(A)$, as $A$ varies over all possible $n\times n$ sieves. Palmer Mebane

6

Let $ABCD$ be any convex quadrilateral and let $P, Q, R, S$ be points on the segments $AB, BC, CD$, and $DA$, respectively. It is given that the segments $PR$ and $QS$ dissect $ABCD$ into four quadrilaterals, each of which has perpendicular diagonals. Show that the points $P, Q, R, S$ are concyclic.