2019 Romanian Master of Mathematics

February 22 - Day 1

1

Amy and Bob play the game. At the beginning, Amy writes down a positive integer on the board. Then the players take moves in turn, Bob moves first. On any move of his, Bob replaces the number $n$ on the blackboard with a number of the form $n-a^2$, where $a$ is a positive integer. On any move of hers, Amy replaces the number $n$ on the blackboard with a number of the form $n^k$, where $k$ is a positive integer. Bob wins if the number on the board becomes zero. Can Amy prevent Bob’s win? Maxim Didin, Russia

2

Let $ABCD$ be an isosceles trapezoid with $AB\parallel CD$. Let $E$ be the midpoint of $AC$. Denote by $\omega$ and $\Omega$ the circumcircles of the triangles $ABE$ and $CDE$, respectively. Let $P$ be the crossing point of the tangent to $\omega$ at $A$ with the tangent to $\Omega$ at $D$. Prove that $PE$ is tangent to $\Omega$. Jakob Jurij Snoj, Slovenia

3

Given any positive real number $\varepsilon$, prove that, for all but finitely many positive integers $v$, any graph on $v$ vertices with at least $(1+\varepsilon)v$ edges has two distinct simple cycles of equal lengths. (Recall that the notion of a simple cycle does not allow repetition of vertices in a cycle.) Fedor Petrov, Russia

February 23 - Day 2

4

Prove that for every positive integer $n$ there exists a (not necessarily convex) polygon with no three collinear vertices, which admits exactly $n$ diffferent triangulations. (A triangulation is a dissection of the polygon into triangles by interior diagonals which have no common interior points with each other nor with the sides of the polygon)

5

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying \[f(x + yf(x)) + f(xy) = f(x) + f(2019y),\]for all real numbers $x$ and $y$.

6

Find all pairs of integers $(c, d)$, both greater than 1, such that the following holds: For any monic polynomial $Q$ of degree $d$ with integer coefficients and for any prime $p > c(2c+1)$, there exists a set $S$ of at most $\big(\tfrac{2c-1}{2c+1}\big)p$ integers, such that \[\bigcup_{s \in S} \{s,\; Q(s),\; Q(Q(s)),\; Q(Q(Q(s))),\; \dots\}\]contains a complete residue system modulo $p$ (i.e., intersects with every residue class modulo $p$).