2021 Romanian Master of Mathematics

October 12 - Day 1

1

Let $T_1, T_2, T_3, T_4$ be pairwise distinct collinear points such that $T_2$ lies between $T_1$ and $T_3$, and $T_3$ lies between $T_2$ and $T_4$. Let $\omega_1$ be a circle through $T_1$ and $T_4$; let $\omega_2$ be the circle through $T_2$ and internally tangent to $\omega_1$ at $T_1$; let $\omega_3$ be the circle through $T_3$ and externally tangent to $\omega_2$ at $T_2$; and let $\omega_4$ be the circle through $T_4$ and externally tangent to $\omega_3$ at $T_3$. A line crosses $\omega_1$ at $P$ and $W$, $\omega_2$ at $Q$ and $R$, $\omega_3$ at $S$ and $T$, and $\omega_4$ at $U$ and $V$, the order of these points along the line being $P,Q,R,S,T,U,V,W$. Prove that $PQ + TU = RS + VW$ Geza Kos, Hungary

2

Xenia and Sergey play the following game. Xenia thinks of a positive integer $N$ not exceeding $5000$. Then she fixes $20$ distinct positive integers $a_1, a_2, \cdots, a_{20}$ such that, for each $k = 1,2,\cdots,20$, the numbers $N$ and $a_k$ are congruent modulo $k$. By a move, Sergey tells Xenia a set $S$ of positive integers not exceeding $20$, and she tells him back the set $\{a_k : k \in S\}$ without spelling out which number corresponds to which index. How many moves does Sergey need to determine for sure the number Xenia thought of? Sergey Kudrya, Russia

3

A number of $17$ workers stand in a row. Every contiguous group of at least $2$ workers is a $\textit{brigade}$. The chief wants to assign each brigade a leader (which is a member of the brigade) so that each worker’s number of assignments is divisible by $4$. Prove that the number of such ways to assign the leaders is divisible by $17$. Mikhail Antipov, Russia

October 13 - Day 2

4

Consider an integer \(n \ge 2\) and write the numbers \(1, 2, \ldots, n\) down on a board. A move consists in erasing any two numbers \(a\) and \(b\), then writing down the numbers \(a+b\) and \(\vert a-b \vert\) on the board, and then removing repetitions (e.g., if the board contained the numbers \(2, 5, 7, 8\), then one could choose the numbers \(a = 5\) and \(b = 7\), obtaining the board with numbers \(2, 8, 12\)). For all integers \(n \ge 2\), determine whether it is possible to be left with exactly two numbers on the board after a finite number of moves. Proposed by China

5

Let \(n\) be a positive integer. The kingdom of Zoomtopia is a convex polygon with integer sides, perimeter \(6n\), and \(60^\circ\) rotational symmetry (that is, there is a point \(O\) such that a \(60^\circ\) rotation about \(O\) maps the polygon to itself). In light of the pandemic, the government of Zoomtopia would like to relocate its \(3n^2+3n+1\) citizens at \(3n^2+3n+1\) points in the kingdom so that every two citizens have a distance of at least \(1\) for proper social distancing. Prove that this is possible. (The kingdom is assumed to contain its boundary.) Proposed by Ankan Bhattacharya, USA

6

Initially, a non-constant polynomial $S(x)$ with real coefficients is written down on a board. Whenever the board contains a polynomial $P(x)$, not necessarily alone, one can write down on the board any polynomial of the form $P(C + x)$ or $C + P(x)$ where $C$ is a real constant. Moreover, if the board contains two (not necessarily distinct) polynomials $P(x)$ and $Q(x)$, one can write $P(Q(x))$ and $P(x) + Q(x)$ down on the board. No polynomial is ever erased from the board. Given two sets of real numbers, $A = \{ a_1, a_2, \dots, a_n \}$ and $B = \{ b_1, \dots, b_n \}$, a polynomial $f(x)$ with real coefficients is $(A,B)$-nice if $f(A) = B$, where $f(A) = \{ f(a_i) : i = 1, 2, \dots, n \}$. Determine all polynomials $S(x)$ that can initially be written down on the board such that, for any two finite sets $A$ and $B$ of real numbers, with $|A| = |B|$, one can produce an $(A,B)$-nice polynomial in a finite number of steps. Proposed by Navid Safaei, Iran