2017 China National Olympiad

November 23rd - Day 1

1

The sequences $\{u_{n}\}$ and $\{v_{n}\}$ are defined by $u_{0} =u_{1} =1$ ,$u_{n}=2u_{n-1}-3u_{n-2}$ $(n\geq2)$ , $v_{0} =a, v_{1} =b , v_{2}=c$ ,$v_{n}=v_{n-1}-3v_{n-2}+27v_{n-3}$ $(n\geq3)$. There exists a positive integer $N$ such that when $n> N$, we have $u_{n}\mid v_{n}$ . Prove that $3a=2b+c$.

2

In acute triangle $ABC$, let $\odot O$ be its circumcircle, $\odot I$ be its incircle. Tangents at $B,C$ to $\odot O$ meet at $L$, $\odot I$ touches $BC$ at $D$. $AY$ is perpendicular to $BC$ at $Y$, $AO$ meets $BC$ at $X$, and $OI$ meets $\odot O$ at $P,Q$. Prove that $P,Q,X,Y$ are concyclic if and only if $A,D,L$ are collinear.

3

Consider a rectangle $R$ partitioned into $2016$ smaller rectangles such that the sides of each smaller rectangle is parallel to one of the sides of the original rectangle. Call the corners of each rectangle a vertex. For any segment joining two vertices, call it basic if no other vertex lie on it. (The segments must be part of the partitioning.) Find the maximum/minimum possible number of basic segments over all possible partitions of $R$.

November 24th - Day 2

4

Let $n \geq 2$ be a natural number. For any two permutations of $(1,2,\cdots,n)$, say $\alpha = (a_1,a_2,\cdots,a_n)$ and $\beta = (b_1,b_2,\cdots,b_n),$ if there exists a natural number $k \leq n$ such that $$b_i = \begin{cases} a_{k+1-i}, & \text{ }1 \leq i \leq k; \\ a_i, & \text{} k < i \leq n, \end{cases}$$we call $\alpha$ a friendly permutation of $\beta$. Prove that it is possible to enumerate all possible permutations of $(1,2,\cdots,n)$ as $P_1,P_2,\cdots,P_m$ such that for all $i = 1,2,\cdots,m$, $P_{i+1}$ is a friendly permutation of $P_i$ where $m = n!$ and $P_{m+1} = P_1$.

5

Let $D_n$ be the set of divisors of $n$. Find all natural $n$ such that it is possible to split $D_n$ into two disjoint sets $A$ and $G$, both containing at least three elements each, such that the elements in $A$ form an arithmetic progression while the elements in $G$ form a geometric progression.

6

Given an integer $n \geq2$ and real numbers $a,b$ such that $0<a<b$. Let $x_1,x_2,\ldots, x_n\in [a,b]$ be real numbers. Find the maximum value of $$\frac{\frac{x^2_1}{x_2}+\frac{x^2_2}{x_3}+\cdots+\frac{x^2_{n-1}}{x_n}+\frac{x^2_n}{x_1}}{x_1+x_2+\cdots +x_{n-1}+x_n}.$$