2024 Israel National Olympiad (Gillis)

6th of December, 2023 - Date

P1

Solve the following system (over the real numbers): \[\begin{cases}5x+5y+5xy-2xy^2-2x^2y=20 &\\ 3x+3y+3xy+xy^2+x^2y=23&\end{cases}\]

P2

A positive integer $x$ satisfies the following: \[\{\frac{x}{3}\}+\{\frac{x}{5}\}+\{\frac{x}{7}\}+\{\frac{x}{11}\}=\frac{248}{165}\]Find all possible values of \[\{\frac{2x}{3}\}+\{\frac{2x}{5}\}+\{\frac{2x}{7}\}+\{\frac{2x}{11}\}\]where $\{y\}$ denotes the fractional part of $y$.

P3

A triangle is composed of circular cells arranged in $5784$ rows: the first row has one cell, the second has two cells, and so on (see the picture). The cells are divided into pairs of adjacent cells (circles touching each other), so that each cell belongs to exactly one pair. A pair of adjacent cells is called diagonal if the two cells in it aren't in the same row. What is the minimum possible amount of diagonal pairs in the division? An example division into pairs is depicted in the image.

P4

Acute triangle $ABC$ is inscribed in a circle with center $O$. The reflections of $O$ across the three altitudes of the triangle are called $U$, $V$, $W$: $U$ over the altitude from $A$, $V$ over the altitude from $B$, and $W$ over the altitude from $C$. Let $\ell_A$ be a line through $A$ parallel to $VW$, and define $\ell_B$, $\ell_C$ similarly. Prove that the three lines $\ell_A$, $\ell_B$, $\ell_C$ are concurrent.

P5

For positive integral $k>1$, we let $p(k)$ be its smallest prime divisor. Given an integer $a_1>2$, we define an infinite sequence $a_n$ by $a_{n+1}=a_n^n-1$ for each $n\geq 1$. For which values of $a_1$ is the sequence $p(a_n)$ bounded?

P6

Quadrilateral $ABCD$ is inscribed in a circle. Let $\omega_A$, $\omega_B$, $\omega_C$, $\omega_D$ be the incircles of triangles $DAB$, $ABC$, $BCD$, $CDA$ respectively. The common external common tangent of $\omega_A$, $\omega_B$, different from line $AB$, meets the external common tangent of $\omega_A$, $\omega_D$, different from $AD$, at point $A'$. Similarly, the external common tangent of $\omega_B$, $\omega_C$ different from $BC$ meets the external common tangent of $\omega_C$, $\omega_D$ different from $CD$ at $C'$. Prove that $AA'\parallel CC'$.

P7

A rook stands in one cell of an infinite square grid. A different cell was colored blue and mines were placed in $n$ additional cells: the rook cannot stand on or pass through them. It is known that the rook can reach the blue cell in finitely many moves. Can it do so (for every $n$ and such a choice of mines, starting point, and blue cell) in at most (a) $1.99n+100$ moves? (b) $2n-2\sqrt{3n}+100$ moves? Remark. In each move, the rook goes in a vertical or horizontal line.