Let $k$ be the circle and $A$ and $B$ points on circle which are not diametrically opposite. On minor arc $AB$ lies point arbitrary point $C$. Let $D$, $E$ and $F$ be foots of perpendiculars from $C$ on chord $AB$ and tangents of circle $k$ in points $A$ and $B$. Prove that $CD= \sqrt {CE \cdot CF}$
2014 Bosnia Herzegovina Team Selection Test
May 10th - Day 1
Let $a$ ,$b$ and $c$ be distinct real numbers. $a)$ Determine value of $ \frac{1+ab }{a-b} \cdot \frac{1+bc }{b-c} + \frac{1+bc }{b-c} \cdot \frac{1+ca }{c-a} + \frac{1+ca }{c-a} \cdot \frac{1+ab}{a-b} $ $b)$ Determine value of $ \frac{1-ab }{a-b} \cdot \frac{1-bc }{b-c} + \frac{1-bc }{b-c} \cdot \frac{1-ca }{c-a} + \frac{1-ca }{c-a} \cdot \frac{1-ab}{a-b} $ $c)$ Prove the following ineqaulity $ \frac{1+a^2b^2 }{(a-b)^2} + \frac{1+b^2c^2 }{(b-c)^2} + \frac{1+c^2a^2 }{(c-a)^2} \geq \frac{3}{2} $ When does eqaulity holds?
Find all nonnegative integer numbers such that $7^x- 2 \cdot 5^y = -1$
May 11th - Day 2
Sequence $a_n$ is defined by $a_1=\frac{1}{2}$, $a_m=\frac{a_{m-1}}{2m \cdot a_{m-1} + 1}$ for $m>1$. Determine value of $a_1+a_2+...+a_k$ in terms of $k$, where $k$ is positive integer.
It is given regular $n$-sided polygon, $n \geq 6$. How many triangles they are inside the polygon such that all of their sides are formed by diagonals of polygon and their vertices are vertices of polygon?
Let $D$ and $E$ be foots of altitudes from $A$ and $B$ of triangle $ABC$, $F$ be intersection point of angle bisector from $C$ with side $AB$, and $O$, $I$ and $H$ be circumcenter, center of inscribed circle and orthocenter of triangle $ABC$, respectively. If $\frac{CF}{AD}+ \frac{CF}{BE}=2$, prove that $OI = IH$.