2011 Mongolia Team Selection Test

Day 1

1

Let $v(n)$ be the order of $2$ in $n!$. Prove that for any positive integers $a$ and $m$ there exists $n$ ($n>1$) such that $v(n) \equiv a (\mod m)$. I have a book with Mongolian problems from this year, and this problem appeared in it. Perhaps I am terribly misinterpreting this problem, but it seems like it is wrong. Any ideas?

2

Mongolia TST 2011 Test 1 #2 Let $p$ be a prime number. Prove that: $\sum_{k=0}^p (-1)^k \dbinom{p}{k} \dbinom{p+k}{k} \equiv -1 (\mod p^3)$ (proposed by B. Batbayasgalan, inspired by Putnam olympiad problem) Note: I believe they meant to say $p>2$ as well.

3

We are given an acute triangle $ABC$. Let $(w,I)$ be the inscribed circle of $ABC$, $(\Omega,O)$ be the circumscribed circle of $ABC$, and $A_0$ be the midpoint of altitude $AH$. $w$ touches $BC$ at point $D$. $A_0 D$ and $w$ intersect at point $P$, and the perpendicular from $I$ to $A_0 D$ intersects $BC$ at the point $M$. $MR$ and $MS$ lines touch $\Omega$ at $R$ and $S$ respectively [note: I am not entirely sure of what is meant by this, but I am pretty sure it means draw the tangents to $\Omega$ from $M$]. Prove that the points $R,P,D,S$ are concyclic. (proposed by E. Enkzaya, inspired by Vietnamese olympiad problem)

Day 2

1

A group of the pupils in a class are called dominant if any other pupil from the class has a friend in the group. If it is known that there exist at least 100 dominant groups, prove that there exists at least one more dominant group. (proposed by B. Batbayasgalan, inspired by Komal problem)

2

Let $ABC$ be a scalene triangle. The inscribed circle of $ABC$ touches the sides $BC$, $CA$, and $AB$ at the points $A_1$, $B_1$, $C_1$ respectively. Let $I$ be the incenter, $O$ be the circumcenter, and lines $OI$ and $BC$ meet at point $D$. The perpendicular line from $A_1$ to $B_1 C_1$ intersects $AD$ at point $E$. Prove that $B_1 C_1$ passes through the midpoint of $EA_1$.

3

Let $G$ be a graph, not containing $K_4$ as a subgraph and $|V(G)|=3k$ (I interpret this to be the number of vertices is divisible by 3). What is the maximum number of triangles in $G$?

Day 3

1

Let $A=\{a^2+13b^2 \mid a,b \in\mathbb{Z}, b\neq0\}$. Prove that there a) exist b) exist infinitely many $x,y$ integer pairs such that $x^{13}+y^{13} \in A$ and $x+y \notin A$. (proposed by B. Bayarjargal)

2

Given a triangle $ABC$, the internal and external bisectors of angle $A$ intersect $BC$ at points $D$ and $E$ respectively. Let $F$ be the point (different from $A$) where line $AC$ intersects the circle $w$ with diameter $DE$. Finally, draw the tangent at $A$ to the circumcircle of triangle $ABF$, and let it hit $w$ at $A$ and $G$. Prove that $AF=AG$.

3

Let $n$ and $d$ be positive integers satisfying $d<\dfrac{n}{2}$. There are $n$ boys and $n$ girls in a school. Each boy has at most $d$ girlfriends and each girl has at most $d$ boyfriends. Prove that one can introduce some of them to make each boy have exactly $2d$ girlfriends and each girl have exactly $2d$ boyfriends. (I think we assume if a girl has a boyfriend, she is his girlfriend as well and vice versa) (proposed by B. Batbaysgalan, folklore).

Day 4

1

Let $t,k,m$ be positive integers and $t>\sqrt{km}$. Prove that $\dbinom{2m}{0}+\dbinom{2m}{1}+\cdots+\dbinom{2m}{m-t-1}<\dfrac{2^{2m}}{2k}$ (proposed by B. Amarsanaa, folklore)

2

Let $r$ be a given positive integer. Is is true that for every $r$-colouring of the natural numbers there exists a monochromatic solution of the equation $x+y=3z$? (proposed by B. Batbaysgalan, folklore)

3

Let $m$ and $n$ be positive integers such that $m>n$ and $m \equiv n \pmod{2}$. If $(m^2-n^2+1) \mid n^2-1$, then prove that $m^2-n^2+1$ is a perfect square. (proposed by G. Batzaya, folklore)