Let $P(x)$ be a polynomial of degree $2012$ with real coefficients satisfying the condition \[P(a)^3 + P(b)^3 + P(c)^3 \geq 3P(a)P(b)P(c),\] for all real numbers $a,b,c$ such that $a+b+c=0$. Is it possible for $P(x)$ to have exactly $2012$ distinct real roots?
2012 Serbia Team Selection Test
TST
Additional TST
1
2
Let $\sigma(x)$ denote the sum of divisors of natural number $x$, including $1$ and $x$. For every $n\in \mathbb{N}$ define $f(n)$ as number of natural numbers $m, m\leq n$, for which $\sigma(m)$ is odd number. Prove that there are infinitely many natural numbers $n$, such that $f(n)|n$.
3
Let $P$ and $Q$ be points inside triangle $ABC$ satisfying $\angle PAC=\angle QAB$ and $\angle PBC=\angle QBA$. a) Prove that feet of perpendiculars from $P$ and $Q$ on the sides of triangle $ABC$ are concyclic. b) Let $D$ and $E$ be feet of perpendiculars from $P$ on the lines $BC$ and $AC$ and $F$ foot of perpendicular from $Q$ on $AB$. Let $M$ be intersection point of $DE$ and $AB$. Prove that $MP\bot CF$.