2007 Serbia National Math Olympiad

Day 1

1

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2

Triangle $\Delta GRB$ is dissected into $25$ small triangles as shown. All vertices of these triangles are painted in three colors so that the following conditions are satisfied: Vertex $G$ is painted in green, vertex $R$ in red, and $B$ in blue; Each vertex on side $GR$ is either green or red, each vertex on $RB$ is either red or blue, and each vertex on $GB$ is either green or blue. The vertices inside the big triangle are arbitrarily colored. Prove that, regardless of the way of coloring, at least one of the $25$ small triangles has vertices of three different colors.

3

Determine all pairs of natural numbers $(x; n)$ that satisfy the equation \[x^{3}+2x+1 = 2^{n}.\]

Day 2

1

Let $k$ be a natural number. For each function $f : \mathbb{N}\to \mathbb{N}$ define the sequence of functions $(f_{m})_{m\geq 1}$ by $f_{1}= f$ and $f_{m+1}= f \circ f_{m}$ for $m \geq 1$ . Function $f$ is called $k$-nice if for each $n \in\mathbb{N}: f_{k}(n) = f (n)^{k}$. (a) For which $k$ does there exist an injective $k$-nice function $f$ ? (b) For which $k$ does there exist a surjective $k$-nice function $f$ ?

2

In a scalene triangle $ABC , AD, BE , CF$ are the angle bisectors $(D \in BC , E \in AC , F \in AB)$. Points $K_{a}, K_{b}, K_{c}$ on the incircle of triangle $ABC$ are such that $DK_{a}, EK_{b}, FK_{c}$ are tangent to the incircle and $K_{a}\not\in BC , K_{b}\not\in AC , K_{c}\not\in AB$. Let $A_{1}, B_{1}, C_{1}$ be the midpoints of sides $BC , CA, AB$ , respectively. Prove that the lines $A_{1}K_{a}, B_{1}K_{b}, C_{1}K_{c}$ intersect on the incircle of triangle $ABC$.

3

Let $k$ be a given natural number. Prove that for any positive numbers $x; y; z$ with the sum $1$ the following inequality holds: \[\frac{x^{k+2}}{x^{k+1}+y^{k}+z^{k}}+\frac{y^{k+2}}{y^{k+1}+z^{k}+x^{k}}+\frac{z^{k+2}}{z^{k+1}+x^{k}+y^{k}}\geq \frac{1}{7}.\] When does equality occur?