PEN I Problems

1

Let $ \alpha$ be the positive root of the equation $ x^{2} = 1991x + 1$. For natural numbers $ m$ and $ n$ define \[ m*n = mn + \lfloor\alpha m \rfloor \lfloor \alpha n\rfloor. \] Prove that for all natural numbers $ p$, $ q$, and $ r$, \[ (p*q)*r = p*(q*r). \]

2

Prove that for any positive integer $n$, \[\left\lfloor \frac{n}{3}\right\rfloor+\left\lfloor \frac{n+2}{6}\right\rfloor+\left\lfloor \frac{n+4}{6}\right\rfloor = \left\lfloor \frac{n}{2}\right\rfloor+\left\lfloor \frac{n+3}{6}\right\rfloor .\]

3

Prove that for any positive integer $n$, \[\left\lfloor \frac{n+1}{2}\right\rfloor+\left\lfloor \frac{n+2}{4}\right\rfloor+\left\lfloor \frac{n+4}{8}\right\rfloor+\left\lfloor \frac{n+8}{16}\right\rfloor+\cdots = n.\]

4

Show that for all positive integers $n$, \[\lfloor \sqrt{n}+\sqrt{n+1}\rfloor =\lfloor \sqrt{4n+1}\rfloor =\lfloor \sqrt{4n+2}\rfloor =\lfloor \sqrt{4n+3}\rfloor.\]

5

Find all real numbers $\alpha$ for which the equality \[\lfloor \sqrt{n}+\sqrt{n+\alpha}\rfloor =\lfloor \sqrt{4n+1}\rfloor\] holds for all positive integers $n$.

6

Prove that for all positive integers $n$, \[\lfloor \sqrt{n}+\sqrt{n+1}+\sqrt{n+2}\rfloor =\lfloor \sqrt{9n+8}\rfloor.\]

7

Prove that for all positive integers $n$, \[\lfloor \sqrt[3]{n}+\sqrt[3]{n+1}\rfloor =\lfloor \sqrt[3]{8n+3}\rfloor.\]

8

Prove that $\lfloor \sqrt[3]{n}+\sqrt[3]{n+1}+\sqrt[3]{n+2}\rfloor =\lfloor \sqrt[3]{27n+26}\rfloor$ for all positive integers $n$.

9

Show that for all positive integers $m$ and $n$, \[\gcd(m, n) = m+n-mn+2\sum^{m-1}_{k=0}\left \lfloor \frac{kn}{m}\right \rfloor.\]

10

Show that for all primes $p$, \[\sum^{p-1}_{k=1}\left \lfloor \frac{k^{3}}{p}\right \rfloor =\frac{(p+1)(p-1)(p-2)}{4}.\]

11

Let $p$ be a prime number of the form $4k+1$. Show that \[\sum^{p-1}_{i=1}\left( \left \lfloor \frac{2i^{2}}{p}\right \rfloor-2\left \lfloor \frac{i^{2}}{p}\right \rfloor \right) = \frac{p-1}{2}.\]

12

Let $p=4k+1$ be a prime. Show that \[\sum^{k}_{i=1}\left \lfloor \sqrt{ ip }\right \rfloor = \frac{p^{2}-1}{12}.\]

13

Suppose that $n \ge 2$. Prove that \[\sum_{k=2}^{n}\left\lfloor \frac{n^{2}}{k}\right\rfloor = \sum_{k=n+1}^{n^{2}}\left\lfloor \frac{n^{2}}{k}\right\rfloor.\]

14

Let $a, b, n$ be positive integers with $\gcd(a, b)=1$. Prove that \[\sum_{k}\left\{ \frac{ak+b}{n}\right\}=\frac{n-1}{2},\] where $k$ runs through a complete system of residues modulo $m$.

15

Find the total number of different integer values the function \[f(x) = \lfloor x\rfloor+\lfloor 2x\rfloor+\left\lfloor \frac{5x}{3}\right\rfloor+\lfloor 3x\rfloor+\lfloor 4x\rfloor\] takes for real numbers $x$ with $0 \leq x \leq 100$.

16

Prove or disprove that there exists a positive real number $u$ such that $\lfloor u^n \rfloor -n$ is an even integer for all positive integer $n$.

17

Determine all real numbers $a$ such that \[4\lfloor an\rfloor =n+\lfloor a\lfloor an\rfloor \rfloor \; \text{for all}\; n \in \mathbb{N}.\]

18

Do there exist irrational numbers $a, b>1$ and $\lfloor a^{m}\rfloor \not=\lfloor b^{n}\rfloor $ for any positive integers $m$ and $n$?

19

Let $a, b, c$, and $d$ be real numbers. Suppose that $\lfloor na\rfloor +\lfloor nb\rfloor =\lfloor nc\rfloor +\lfloor nd\rfloor $ for all positive integers $n$. Show that at least one of $a+b$, $a-c$, $a-d$ is an integer.

20

Find all integer solutions of the equation \[\left\lfloor \frac{x}{1!}\right\rfloor+\left\lfloor \frac{x}{2!}\right\rfloor+\cdots+\left\lfloor \frac{x}{10!}\right\rfloor =1001.\]