Let $ \mathbb{R} ^{+} $ denote the set of all positive real numbers. Find all functions $ \mathbb{R} ^{+} \to \mathbb{R} ^{+} $ such that \[ f(x+f(y)) = yf(xy+1)\] holds for all $ x, y \in \mathbb{R} ^{+} $.
2012 Middle European Mathematical Olympiad
Individual Competition
September 8th
Let $ N $ be a positive integer. A set $ S \subset \{ 1, 2, \cdots, N \} $ is called allowed if it does not contain three distinct elements $ a, b, c $ such that $ a $ divides $ b $ and $ b $ divides $c$. Determine the largest possible number of elements in an allowed set $ S $.
In a given trapezium $ ABCD $ with $ AB$ parallel to $ CD $ and $ AB > CD $, the line $ BD $ bisects the angle $ \angle ADC $. The line through $ C $ parallel to $ AD $ meets the segments $ BD $ and $ AB $ in $ E $ and $ F $, respectively. Let $ O $ be the circumcenter of the triangle $ BEF $. Suppose that $ \angle ACO = 60^{\circ} $. Prove the equality \[ CF = AF + FO .\]
The sequence $ \{ a_n \} _ { n \ge 0 } $ is defined by $ a_0 = 2 , a_1 = 4 $ and \[ a_{n+1} = \frac{a_n a_{n-1}}{2} + a_n + a_{n-1} \] for all positive integers $ n $. Determine all prime numbers $ p $ for which there exists a positive integer $ m $ such that $ p $ divides the number $ a_m - 1 $.
Team Competition
October 9th
Find all triplets $ (x,y,z) $ of real numbers such that \[ 2x^3 + 1 = 3zx \]\[ 2y^3 + 1 = 3xy \]\[ 2z^3 + 1 = 3yz \]
Let $ a,b$ and $ c $ be positive real numbers with $ abc = 1 $. Prove that \[ \sqrt{ 9 + 16a^2}+\sqrt{ 9 + 16b^2}+\sqrt{ 9 + 16c^2} \ge 3 +4(a+b+c)\]
Let $ n $ be a positive integer. Consider words of length $n$ composed of letters from the set $ \{ M, E, O \} $. Let $ a $ be the number of such words containing an even number (possibly 0) of blocks $ ME $ and an even number (possibly 0) blocks of $ MO $ . Similarly let $ b $ the number of such words containing an odd number of blocks $ ME $ and an odd number of blocks $ MO $. Prove that $ a>b $.
Let $ p>2 $ be a prime number. For any permutation $ \pi = ( \pi(1) , \pi(2) , \cdots , \pi(p) ) $ of the set $ S = \{ 1, 2, \cdots , p \} $, let $ f( \pi ) $ denote the number of multiples of $ p $ among the following $ p $ numbers: \[ \pi(1) , \pi(1) + \pi(2) , \cdots , \pi(1) + \pi(2) + \cdots + \pi(p) \] Determine the average value of $ f( \pi) $ taken over all permutations $ \pi $ of $ S $.
Let $ K $ be the midpoint of the side $ AB $ of a given triangle $ ABC $. Let $ L $ and $ M$ be points on the sides $ AC $ and $ BC$, respectively, such that $ \angle CLK = \angle KMC $. Prove that the perpendiculars to the sides $ AB, AC, $ and $ BC $ passing through $ K,L, $ and $M$, respectively, are concurrent.
Let $ ABCD $ be a convex quadrilateral with no pair of parallel sides, such that $ \angle ABC = \angle CDA $. Assume that the intersections of the pairs of neighbouring angle bisectors of $ ABCD $ form a convex quadrilateral $ EFGH $. Let $ K $ be the intersection of the diagonals of $ EFGH$. Prove that the lines $ AB $ and $ CD $ intersect on the circumcircle of the triangle $ BKD $.
Find all triplets $ (x,y,z) $ of positive integers such that \[ x^y + y^x = z^y \]\[ x^y + 2012 = y^{z+1} \]
For any positive integer $n $ let $ d(n) $ denote the number of positive divisors of $ n $. Do there exist positive integers $ a $ and $b $, such that $ d(a)=d(b)$ and $ d(a^2 ) = d(b^2 ) $, but $ d(a^3 ) \ne d(b^3 ) $ ?