Let $ABCDE$ be a cyclic pentagon such that $BC = DE$ and $AB$ is parallel to $DE$. Let $X, Y,$ and $Z$ be the midpoints of $BD, CE,$ and $AE$ respectively. Show that $AE$ is tangent to the circumcircle of the triangle $XYZ$. Proposed by Nikola Velov, Macedonia
2023 Bulgaria JBMO TST
Day 1
Let $x, y,$ and $z$ be positive real numbers such that $xy + yz + zx = 3$. Prove that $$\frac{x + 3}{y + z} + \frac{y + 3}{z + x} + \frac{z + 3}{x + y} + 3 \ge 27 \cdot \frac{(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}{(x + y + z)^3}.$$ Proposed by Petar Filipovski, Macedonia
Find all natural numbers $a$, $b$, $c$ and prime numbers $p$ and $q$, such that: $\blacksquare$ $4\nmid c$ $\blacksquare$ $p\not\equiv 11\pmod{16}$ $\blacksquare$ $p^aq^b-1=(p+4)^c$
Given is a set of $n\ge5$ people and $m$ commissions with $3$ persons in each. Let all the commissions be nice if there are no two commissions $A$ and $B$, such that $\mid A\cap B\mid=1$. Find the biggest possible $m$ (as a function of $n$).
Day 2
Determine all triples $(x,y,z)$ of real numbers such that $x^4 + y^3z = zx$, $y^4 + z^3x = xy$ and $z^4 + x^3y = yz$.
Determine the smallest positive integer $n\geq 2$ for which there exists a positive integer $m$ such that $mn$ divides $m^{2023} + n^{2023} + n$.
There are infinitely many boxes - initially one of them contains $n$ balls and all others are empty. On a single move we take some balls from a non-empty box and put them into an empty box and on a sheet of paper we write down the product of the resulting amount of balls in the two boxes. After some moves, the sum of all numbers on the sheet of paper became $2023$. What is the smallest possible value of $n$?
Given is an acute angled triangle $ABC$ with orthocenter $H$ and circumcircle $k$. Let $\omega$ be the circle with diameter $AH$ and $P$ be the point of intersection of $\omega$ and $k$ other than $A$. Assume that $BP$ and $CP$ intersect $\omega$ for the second time at points $Q$ and $R$, respectively. If $D$ is the foot of the altitude from $A$ to $BC$ and $S$ is the point of the intersection of $\omega$ and $QD$, prove that $HR = HS$.
Day 3
On the coast of a circular island there are eight different cities. Initially there are no routes between the cities. We have to construct five straight two-way routes, which do not intersect, so that from each city there are one or two routes. In how many ways can this happen?
Let $ABC$ be a non-isosceles triangle with circumcircle $k$, incenter $I$ and $C$-excenter $I_C$. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of arc $\widehat{ACB}$ on $k$. Prove that $\angle IMI_C + \angle INI_C = 180^{\circ}$.
The numbers $2, 2, ..., 2$ are written on a blackboard (the number $2$ is repeated $n$ times). One step consists of choosing two numbers from the blackboard, denoting them as $a$ and $b$, and replacing them with $\sqrt{\frac{ab + 1}{2}}$. $(a)$ If $x$ is the number left on the blackboard after $n - 1$ applications of the above operation, prove that $x \ge \sqrt{\frac{n + 3}{n}}$. $(b)$ Prove that there are infinitely many numbers for which the equality holds and infinitely many for which the inequality is strict.