2023 Switzerland Team Selection Test

Day 1

1

A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$

2

Let $S$ be a non-empty set of positive integers such that for any $n \in S$, all positive divisors of $2^n+1$ are also in $S$. Prove that $S$ contains an integer of the form $(p_1p_2 \ldots p_{2023})^{2023}$, where $p_1, p_2, \ldots, p_{2023}$ are distinct prime numbers, all greater than $2023$.

3

Let $ABC$ be a triangle and $\ell_1,\ell_2$ be two parallel lines. Let $\ell_i$ intersects line $BC,CA,AB$ at $X_i,Y_i,Z_i$, respectively. Let $\Delta_i$ be the triangle formed by the line passed through $X_i$ and perpendicular to $BC$, the line passed through $Y_i$ and perpendicular to $CA$, and the line passed through $Z_i$ and perpendicular to $AB$. Prove that the circumcircles of $\Delta_1$ and $\Delta_2$ are tangent.

Day 2

4

Let $ABC$ and $AMN$ be two similar, non-overlapping triangles with the same orientation, such that $AB=AC$ and $AM=AN$. Let $O$ be the circumcentre of the triangle $MAB$. Prove that the points $O, C, N$ and $A$ lie on a circle if and only if the triangle $ABC$ is equilateral.

5

The Tokyo Metro system is one of the most efficient in the world. There is some odd positive integer $k$ such that each metro line passes through exactly $k$ stations, and each station is serviced by exactly $k$ metro lines. One can get from any station to any otherstation using only one metro line - but this connection is unique. Furthermore, any two metro lines must share exactly one station. David is planning an excursion for the IMO team, and wants to visit a set $S$ of $k$ stations. He remarks that no three of the stationsin $S$ are on a common metro line. Show that there is some station not in $S$, which is connected to every station in $S$ by a different metro line.

6

Find all positive integers $n \geqslant 2$ for which there exist $n$ real numbers $a_1<\cdots<a_n$ and a real number $r>0$ such that the $\tfrac{1}{2}n(n-1)$ differences $a_j-a_i$ for $1 \leqslant i<j \leqslant n$ are equal, in some order, to the numbers $r^1,r^2,\ldots,r^{\frac{1}{2}n(n-1)}$.

Day 3

7

Find all monic polynomials $P(x)=x^{2023}+a_{2022}x^{2022}+\ldots+a_1x+a_0$ with real coefficients such that $a_{2022}=0$, $P(1)=1$ and all roots of $P$ are real and less than $1$.

8

Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$

9

Let $G$ be a graph whose vertices are the integers. Assume that any two integers are connected by a finite path in $G$. For two integers $x$ and $y$, we denote by $d(x, y)$ the length of the shortest path from $x$ to $y$, where the length of a path is the number of edges in it. Assume that $d(x, y) \mid x-y$ for all integers $x, y$ and define $S(G)=\{d(x, y) | x, y \in \mathbb{Z}\}$. Find all possible sets $S(G)$.

Day 4

10

Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.

11

Let $\mathbb R$ be the set of real numbers. We denote by $\mathcal F$ the set of all functions $f\colon\mathbb R\to\mathbb R$ such that $$f(x + f(y)) = f(x) + f(y)$$for every $x,y\in\mathbb R$ Find all rational numbers $q$ such that for every function $f\in\mathcal F$, there exists some $z\in\mathbb R$ satisfying $f(z)=qz$.

12

Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called nice if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\]Prove that the number of nice functions is at least $n^n$.