Let $ABC$ be an acute triangle with orthocenter $H$ and circumcircle $\Omega$. The tangent line of the circumcircle of triangle $BHC$ at $H$ meets $AB$ and $AC$ at $E$ and $F$ respectively. If $O$ is the circumcenter of triangle $AEF$, prove that the circumcircle of triangle $EOF$ is tangent to $\Omega$.
2023 Thailand TSTST
1
Let $n>3$ be an integer. If $x_1<x_2<\ldots<x_{n+2}$ are reals with $x_1=0$, $x_2=1$ and $x_3>2$, what is the maximal value of $$(\frac{x_{n+1}+x_{n+2}-1}{x_{n+1}(x_{n+2}-1)})\cdot (\sum_{i=1}^{n}\frac{(x_{i+2}-x_{i+1})(x_{i+1}-x_i)}{x_{i+2}-x_i})?$$
Prove that there doesn't exist a function $f:\mathbb{N} \rightarrow \mathbb{N}$, such that $(m+f(n))^2 \geq 3f(m)^2+n^2$ for all $m, n \in \mathbb{N}$.
Let $n>1$ be a positive integer. Find the number of binary strings $(a_1, a_2, \ldots, a_n)$, such that the number of indices $1\leq i \leq n-1$ such that $a_i=a_{i+1}=0$ is equal to the number of indices $1 \leq i \leq n-1$, such that $a_i=a_{i+1}=1$.
Let $ABC$ be an acute triangle with orthocenter $H$. Let $D$ and $E$ be feet of the altitudes from $B$ and $C$ respectively. Let $M$ be the midpoint of segment $AH$ and $F$ be the intersection point of $AH$ and $DE$. Furthermore, let $P$ and $Q$ be the points inside triangle $ADE$ so that $P$ is an intersection of $CM$ and the circumcircle of $DFH$, and $Q$ is an intersection of $BM$ and the circumcircle of $EFH$. Prove that the intersection of lines $DQ$ and $EP$ lies on segment $AH$.
2
Let $C$ be a finite set of chords in a circle such that each chord passes through the midpoint of some other chord. Prove that any two of these chords intersect inside the circle.
If $d$ is a positive integer such that $d \mid 5+2022^{2022}$, show that $d=2x^2+2xy+3y^2$ for some $x, y \in \mathbb{Z}$ iff $d \equiv 3,7 \pmod {20}$.
Find all pairs $(p, n)$ with $n>p$, consisting of a positive integer $n$ and a prime $p$, such that $n^{n-p}$ is an $n$-th power of a positive integer.