Let $k\ge2$ be an integer. Find the smallest integer $n \ge k+1$ with the property that there exists a set of $n$ distinct real numbers such that each of its elements can be written as a sum of $k$ other distinct elements of the set.
2023 Azerbaijan IMO TST
Day 1
In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. We say that a tree is majestic if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays.
For each $1\leq i\leq 9$ and $T\in\mathbb N$, define $d_i(T)$ to be the total number of times the digit $i$ appears when all the multiples of $1829$ between $1$ and $T$ inclusive are written out in base $10$. Show that there are infinitely many $T\in\mathbb N$ such that there are precisely two distinct values among $d_1(T)$, $d_2(T)$, $\dots$, $d_9(T)$.
Day 2
A number is called Norwegian if it has three distinct positive divisors whose sum is equal to $2022$. Determine the smallest Norwegian number. (Note: The total number of positive divisors of a Norwegian number is allowed to be larger than $3$.)
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$
Let $n$ be a positive integer. We start with $n$ piles of pebbles, each initially containing a single pebble. One can perform moves of the following form: choose two piles, take an equal number of pebbles from each pile and form a new pile out of these pebbles. Find (in terms of $n$) the smallest number of nonempty piles that one can obtain by performing a finite sequence of moves of this form.