2023 Estonia Team Selection Test

Round 1

Day 1

1

Given a prime number $p{}$ and integers $x{}$ and $y$, find the remainder of the sum $x^0y^{p-1}+x^1y^{p-2}+\ldots+x^{p-2}y^1+x^{p-1}y^0$ upon division by $p{}$.

2

For any natural number $n{}$ and positive integer $k{}$, we say that $n{}$ is $k-good$ if there exist non-negative integers $a_1,\ldots, a_k$ such that $$n=a_1^2+a_2^4+a_3^8+\ldots+a_k^{2^k}.$$Is there a positive integer $k{}$ for which every natural number is $k-good$?

3

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

Day 2

4

A convex quadrilateral $ABCD$ has $\angle BAC = \angle ADC$. Let $M{}$ be the midpoint of the diagonal $AC$. The side $AD$ contains a point $E$ such that $ABME$ is a parallelogram. Let $N{}$ be the midpoint of the line segment $AE{}$. Prove that the line $AC$ touches the circumcircle of the triangle $DMN$ at point $M{}$.

5

Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$for all positive integers $n$. Show that $a_{2022}\leq 1$.

6

In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. We say that a tree is majestic if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays.

Round 2

Day 1

1

Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.

2

Let $n$ be a positive integer. Find all polynomials $P$ with real coefficients such that $$P(x^2+x-n^2)=P(x)^2+P(x)$$for all real numbers $x$.

3

Let $n$ be a positive integer. We start with $n$ piles of pebbles, each initially containing a single pebble. One can perform moves of the following form: choose two piles, take an equal number of pebbles from each pile and form a new pile out of these pebbles. Find (in terms of $n$) the smallest number of nonempty piles that one can obtain by performing a finite sequence of moves of this form.

Day 2

4

A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$

5

We say that distinct positive integers $n, m$ are $friends$ if $\vert n-m \vert$ is a divisor of both ${}n$ and $m$. Prove that, for any positive integer $k{}$, there exist $k{}$ distinct positive integers such that any two of these integers are friends.

6

Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$