Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$for all positive integers $n$. Show that $a_{2022}\leq 1$.
2023 Germany Team Selection Test
VAIMO 1
A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$
In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.
VAIMO 2
Let $ABC$ be an acute triangle and let $\omega$ be its circumcircle. Let the tangents to $\omega$ through $B,C$ meet each other at point $P$. Prove that the perpendicular bisector of $AB$ and the parallel to $AB$ through $P$ meet at line $AC$.
A number is called Norwegian if it has three distinct positive divisors whose sum is equal to $2022$. Determine the smallest Norwegian number. (Note: The total number of positive divisors of a Norwegian number is allowed to be larger than $3$.)
Let $n$ be a positive integer. We start with $n$ piles of pebbles, each initially containing a single pebble. One can perform moves of the following form: choose two piles, take an equal number of pebbles from each pile and form a new pile out of these pebbles. Find (in terms of $n$) the smallest number of nonempty piles that one can obtain by performing a finite sequence of moves of this form.
AIMO 1
Let $k\ge2$ be an integer. Find the smallest integer $n \ge k+1$ with the property that there exists a set of $n$ distinct real numbers such that each of its elements can be written as a sum of $k$ other distinct elements of the set.
Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.
Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.
AIMO 2
Let $P$ be a polynomial with integer coefficients. Assume that there exists a positive integer $n$ with $P(n^2)=2022$. Prove that there cannot be a positive rational number $r$ with $P(r^2)=2024$.
Let $ABC$ be a triangle and $\ell_1,\ell_2$ be two parallel lines. Let $\ell_i$ intersects line $BC,CA,AB$ at $X_i,Y_i,Z_i$, respectively. Let $\Delta_i$ be the triangle formed by the line passed through $X_i$ and perpendicular to $BC$, the line passed through $Y_i$ and perpendicular to $CA$, and the line passed through $Z_i$ and perpendicular to $AB$. Prove that the circumcircles of $\Delta_1$ and $\Delta_2$ are tangent.
For each $1\leq i\leq 9$ and $T\in\mathbb N$, define $d_i(T)$ to be the total number of times the digit $i$ appears when all the multiples of $1829$ between $1$ and $T$ inclusive are written out in base $10$. Show that there are infinitely many $T\in\mathbb N$ such that there are precisely two distinct values among $d_1(T)$, $d_2(T)$, $\dots$, $d_9(T)$.
AIMO 3
Does there exist a positive odd integer $n$ so that there are primes $p_1$, $p_2$ dividing $2^n-1$ with $p_1-p_2=2$?
Let $ABCD$ be a cyclic quadrilateral. Assume that the points $Q, A, B, P$ are collinear in this order, in such a way that the line $AC$ is tangent to the circle $ADQ$, and the line $BD$ is tangent to the circle $BCP$. Let $M$ and $N$ be the midpoints of segments $BC$ and $AD$, respectively. Prove that the following three lines are concurrent: line $CD$, the tangent of circle $ANQ$ at point $A$, and the tangent to circle $BMP$ at point $B$.
Let $A$ be a non-empty set of integers with the following property: For each $a \in A$, there exist not necessarily distinct integers $b,c \in A$ so that $a=b+c$. (a) Proof that there are examples of sets $A$ fulfilling above property that do not contain $0$ as element. (b) Proof that there exist $a_1,\ldots,a_r \in A$ with $r \ge 1$ and $a_1+\cdots+a_r=0$. (c) Proof that there exist pairwise distinct $a_1,\ldots,a_r$ with $r \ge 1$ and $a_1+\cdots+a_r=0$.
AIMO 4
In a triangle $\triangle ABC$ with orthocenter $H$, let $BH$ and $CH$ intersect $AC$ and $AB$ at $E$ and $F$, respectively. If the tangent line to the circumcircle of $\triangle ABC$ passing through $A$ intersects $BC$ at $P$, $M$ is the midpoint of $AH$, and $EF$ intersects $BC$ at $G$, then prove that $PM$ is parallel to $GH$. Proposed by Sreejato Bhattacharya
Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called nice if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\]Prove that the number of nice functions is at least $n^n$.
Let $f(x)$ be a monic polynomial of degree $2023$ with positive integer coefficients. Show that for any sufficiently large integer $N$ and any prime number $p>2023N$, the product \[f(1)f(2)\dots f(N)\]is at most $\binom{2023}{2}$ times divisible by $p$. Proposed by Ashwin Sah
AIMO 5
In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. We say that a tree is majestic if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays.
Let $ABC$ be an acute angled triangle with orthocenter $H$ and $AB<AC$. The point $T$ lies on line $BC$ so that $AT$ is a tangent to the circumcircle of $ABC$. Let lines $AH$ and $BC$ meet at point $D$ and let $M$ be the midpoint of $HC$. Let the circumcircle of $AHT$ meets $CH$ in $P \not=H$ and the circumcircle of $PDM$ meet $BC$ in $Q \not=D$. Prove that $QT=QA$.
Let $\mathbb R$ be the set of real numbers. We denote by $\mathcal F$ the set of all functions $f\colon\mathbb R\to\mathbb R$ such that $$f(x + f(y)) = f(x) + f(y)$$for every $x,y\in\mathbb R$ Find all rational numbers $q$ such that for every function $f\in\mathcal F$, there exists some $z\in\mathbb R$ satisfying $f(z)=qz$.
AIMO 6
Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$
Lucy starts by writing $s$ integer-valued $2022$-tuples on a blackboard. After doing that, she can take any two (not necessarily distinct) tuples $\mathbf{v}=(v_1,\ldots,v_{2022})$ and $\mathbf{w}=(w_1,\ldots,w_{2022})$ that she has already written, and apply one of the following operations to obtain a new tuple: \begin{align*} \mathbf{v}+\mathbf{w}&=(v_1+w_1,\ldots,v_{2022}+w_{2022}) \\ \mathbf{v} \lor \mathbf{w}&=(\max(v_1,w_1),\ldots,\max(v_{2022},w_{2022})) \end{align*}and then write this tuple on the blackboard. It turns out that, in this way, Lucy can write any integer-valued $2022$-tuple on the blackboard after finitely many steps. What is the smallest possible number $s$ of tuples that she initially wrote?
AIMO 7
Let $ABC$ be a acute angled triangle and let $AD,BE,CF$ be its altitudes. $X \not=A,B$ and $Y \not=A,C$ lie on sides $AB$ and $AC$, respectively, so that $ADXY$ is a cyclic quadrilateral. Let $H$ be the orthocenter of triangle $AXY$. Prove that $H$ lies on line $EF$.
Let $\mathbb Z_{\ge 0}$ be the set of non-negative integers, and let $f:\mathbb Z_{\ge 0}\times \mathbb Z_{\ge 0} \to \mathbb Z_{\ge 0}$ be a bijection such that whenever $f(x_1,y_1) > f(x_2, y_2)$, we have $f(x_1+1, y_1) > f(x_2 + 1, y_2)$ and $f(x_1, y_1+1) > f(x_2, y_2+1)$. Let $N$ be the number of pairs of integers $(x,y)$ with $0\le x,y<100$, such that $f(x,y)$ is odd. Find the smallest and largest possible values of $N$.
Prove that $5^n-3^n$ is not divisible by $2^n+65$ for any positive integer $n$.