2023 India IMO Training Camp

Day 1

1

In the fictional country of Mahishmati, there are $50$ cities, including a capital city. Some pairs of cities are connected by two-way flights. Given a city $A$, an ordered list of cities $C_1,\ldots, C_{50}$ is called an antitour from $A$ if every city (including $A$) appears in the list exactly once, and for each $k\in \{1,2,\ldots, 50\}$, it is impossible to go from $A$ to $C_k$ by a sequence of exactly $k$ (not necessarily distinct) flights. Baahubali notices that there is an antitour from $A$ for any city $A$. Further, he can take a sequence of flights, starting from the capital and passing through each city exactly once. Find the least possible total number of antitours from the capital city. Proposed by Sutanay Bhattacharya

2

Let $g:\mathbb{N}\to \mathbb{N}$ be a bijective function and suppose that $f:\mathbb{N}\to \mathbb{N}$ is a function such that: For all naturals $x$, $$\underbrace{f(\cdots (f}_{x^{2023}\;f\text{'s}}(x)))=x. $$ For all naturals $x,y$ such that $x|y$, we have $f(x)|g(y)$. Prove that $f(x)=x$. Proposed by Pulkit Sinha

3

For a positive integer $n$ we denote by $s(n)$ the sum of the digits of $n$. Let $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a polynomial, where $n \geqslant 2$ and $a_i$ is a positive integer for all $0 \leqslant i \leqslant n-1$. Could it be the case that, for all positive integers $k$, $s(k)$ and $s(P(k))$ have the same parity?

Day 2

1

Let $\mathbb{Z}_{\ge 0}$ be the set of non-negative integers and $\mathbb{R}^+$ be the set of positive real numbers. Let $f: \mathbb{Z}_{\ge 0}^2 \rightarrow \mathbb{R}^+$ be a function such that $f(0, k) = 2^k$ and $f(k, 0) = 1$ for all integers $k \ge 0$, and $$f(m, n) = \frac{2f(m-1, n) \cdot f(m, n-1)}{f(m-1, n)+f(m, n-1)}$$for all integers $m, n \ge 1$. Prove that $f(99, 99)<1.99$. Proposed by Navilarekallu Tejaswi

2

In triangle $ABC$, let $D$ be the foot of the perpendicular from $A$ to line $BC$. Point $K$ lies inside triangle $ABC$ such that $\angle KAB = \angle KCA$ and $\angle KAC = \angle KBA$. The line through $K$ perpendicular to like $DK$ meets the circle with diameter $BC$ at points $X,Y$. Prove that $AX \cdot DY = DX \cdot AY$

3

Lucy starts by writing $s$ integer-valued $2022$-tuples on a blackboard. After doing that, she can take any two (not necessarily distinct) tuples $\mathbf{v}=(v_1,\ldots,v_{2022})$ and $\mathbf{w}=(w_1,\ldots,w_{2022})$ that she has already written, and apply one of the following operations to obtain a new tuple: \begin{align*} \mathbf{v}+\mathbf{w}&=(v_1+w_1,\ldots,v_{2022}+w_{2022}) \\ \mathbf{v} \lor \mathbf{w}&=(\max(v_1,w_1),\ldots,\max(v_{2022},w_{2022})) \end{align*}and then write this tuple on the blackboard. It turns out that, in this way, Lucy can write any integer-valued $2022$-tuple on the blackboard after finitely many steps. What is the smallest possible number $s$ of tuples that she initially wrote?

Day 3

1

Let $\mathbb{N}$ be the set of all positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that $f(x) + y$ and $f(y) + x$ have the same number of $1$'s in their binary representations, for any $x,y \in \mathbb{N}$.

2

In a school, every pair of students are either friends or strangers. Friendship is mutual, and no student is friends with themselves. A sequence of (not necessarily distinct) students $A_1, A_2, \dots, A_{2023}$ is called mischievous if $\bullet$ Total number of friends of $A_1$ is odd. $\bullet$ $A_i$ and $A_{i+1}$ are friends for $i=1, 2, \dots, 2022$. $\bullet$ Total number of friends of $A_{2023}$ is even. Prove that the total number of mischievous sequences is even.

3

In triangle $ABC$, with orthocenter $H$ and circumcircle $\Gamma$, the bisector of angle $BAC$ meets $\overline{BC}$ at $K$. Point $Q$ lies on $\Gamma$ such that $\overline{AQ} \perp \overline{QK}$. Circumcircle of $\triangle AQH$ meets $\overline{AC}$ at $Y$ and $\overline{AB}$ at $Z$. Let $\overline{BY}$ and $\overline{CZ}$ meet at $T$. Prove that $\overline{TH} \perp \overline{KA}$

Day 4

1

Suppose an acute scalene triangle $ABC$ has incentre $I$ and incircle touching $BC$ at $D$. Let $Z$ be the antipode of $A$ in the circumcircle of $ABC$. Point $L$ is chosen on the internal angle bisector of $\angle BZC$ such that $AL = LI$. Let $M$ be the midpoint of arc $BZC$, and let $V$ be the midpoint of $ID$. Prove that $\angle IML = \angle DVM$

2

Let $\mathbb R$ be the set of real numbers. We denote by $\mathcal F$ the set of all functions $f\colon\mathbb R\to\mathbb R$ such that $$f(x + f(y)) = f(x) + f(y)$$for every $x,y\in\mathbb R$ Find all rational numbers $q$ such that for every function $f\in\mathcal F$, there exists some $z\in\mathbb R$ satisfying $f(z)=qz$.

3

Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called special if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$. (For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)

Practice Test 1

1

Let $ABC$ be a triangle, and let $D$ be the foot of the $A-$altitude. Points $P, Q$ are chosen on $BC$ such that $DP = DQ = DA$. Suppose $AP$ and $AQ$ intersect the circumcircle of $ABC$ again at $X$ and $Y$. Prove that the perpendicular bisectors of the lines $PX$, $QY$, and $BC$ are concurrent. Proposed by Pranjal Srivastava

2

For a positive integer $k$, let $s(k)$ denote the sum of the digits of $k$. Show that there are infinitely many natural numbers $n$ such that $s(2^n) > s(2^{n+1})$.

3

Prove that for all integers $k>2$, there exists $k$ distinct positive integers $a_1, \dots, a_k$ such that $$\sum_{1 \le i<j \le k} \frac{1}{a_ia_j} =1.$$ Proposed by Anant Mudgal

Pratice Test 2

1

The numbers $1,2,3,4,\ldots , 39$ are written on a blackboard. In one step we are allowed to choose two numbers $a$ and $b$ on the blackboard such that $a$ divides $b$, and replace $a$ and $b$ by the single number $\tfrac{b}{a}$. This process is continued till no number on the board divides any other number. Let $S$ be the set of numbers which is left on the board at the end. What is the smallest possible value of $|S|$? Proposed by B.J. Venkatachala

2

Let $\mathbb R^+$ be the set of all positive real numbers. Find all functions $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ satisfying \[f(x+y^2f(x^2))=f(xy)^2+f(x)\]for all $x,y \in \mathbb{R}^+$. Proposed by Shantanu Nene

3

Let $n$ be any positive integer, and let $S(n)$ denote the number of permutations $\tau$ of $\{1,\dots,n\}$ such that $k^4+(\tau(k))^4$ is prime for all $k=1,\dots,n$. Show that $S(n)$ is always a square.