2023 ELMO Problems

Day 1

1

Let \(m\) be a positive integer. Find, in terms of \(m\), all polynomials \(P(x)\) with integer coefficients such that for every integer \(n\), there exists an integer \(k\) such that \(P(k)=n^m\). Proposed by Raymond Feng

2

Let \(a\), \(b\), and \(n\) be positive integers. A lemonade stand owns \(n\) cups, all of which are initially empty. The lemonade stand has a filling machine and an emptying machine, which operate according to the following rules: If at any moment, \(a\) completely empty cups are available, the filling machine spends the next \(a\) minutes filling those \(a\) cups simultaneously and doing nothing else. If at any moment, \(b\) completely full cups are available, the emptying machine spends the next \(b\) minutes emptying those \(b\) cups simultaneously and doing nothing else. Suppose that after a sufficiently long time has passed, both the filling machine and emptying machine work without pausing. Find, in terms of \(a\) and \(b\), the least possible value of \(n\). Proposed by Raymond Feng

3

Convex quadrilaterals \(ABCD\), \(A_1B_1C_1D_1\), and \(A_2B_2C_2D_2\) are similar with vertices in order. Points \(A\), \(A_1\), \(B_2\), \(B\) are collinear in order, points \(B\), \(B_1\), \(C_2\), \(C\) are collinear in order, points \(C\), \(C_1\), \(D_2\), \(D\) are collinear in order, and points \(D\), \(D_1\), \(A_2\), \(A\) are collinear in order. Diagonals \(AC\) and \(BD\) intersect at \(P\), diagonals \(A_1C_1\) and \(B_1D_1\) intersect at \(P_1\), and diagonals \(A_2C_2\) and \(B_2D_2\) intersect at \(P_2\). Prove that points \(P\), \(P_1\), and \(P_2\) are collinear. Proposed by Holden Mui

Day 2

4

Let \(ABC\) be an acute scalene triangle with orthocenter \(H\). Line \(BH\) intersects \(\overline{AC}\) at \(E\) and line \(CH\) intersects \(\overline{AB}\) at \(F\). Let \(X\) be the foot of the perpendicular from \(H\) to the line through \(A\) parallel to \(\overline{EF}\). Point \(B_1\) lies on line \(XF\) such that \(\overline{BB_1}\) is parallel to \(\overline{AC}\), and point \(C_1\) lies on line \(XE\) such that \(\overline{CC_1}\) is parallel to \(\overline{AB}\). Prove that points \(B\), \(C\), \(B_1\), \(C_1\) are concyclic. Proposed by Luke Robitaille

5

Find the least positive integer \(M\) for which there exist a positive integer \(n\) and polynomials \(P_1(x)\), \(P_2(x)\), \(\ldots\), \(P_n(x)\) with integer coefficients satisfying \[Mx=P_1(x)^3+P_2(x)^3+\cdots+P_n(x)^3.\] Proposed by Karthik Vedula

6

For a set \(S\) of positive integers and a positive integer \(n\), consider the game of \((n,S)\)-nim, which is as follows. A pile starts with \(n\) watermelons. Two players, Deric and Erek, alternate turns eating watermelons from the pile, with Deric going first. On any turn, the number of watermelons eaten must be an element of \(S\). The last player to move wins. Let \(f(S)\) denote the set of positive integers \(n\) for which Deric has a winning strategy in \((n,S)\)-nim. Let \(T\) be a set of positive integers. Must the sequence \[T, \; f(T), \; f(f(T)), \;\ldots\]be eventually constant? Proposed by Brandon Wang and Edward Wan