Let $n$ be a positive integer. Find the number of permutations $a_1$, $a_2$, $\dots a_n$ of the sequence $1$, $2$, $\dots$ , $n$ satisfying $$a_1 \le 2a_2\le 3a_3 \le \dots \le na_n$$. Proposed by United Kingdom
2021 Brazil Team Selection Test
May 24th, 2021 - Test 1
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?
Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: $(i)$ $f(n) \neq 0$ for at least one $n$; $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$.
June 14th, 2021 - Test 2 Day 1
Players $A$ and $B$ play a game on a blackboard that initially contains 2020 copies of the number 1 . In every round, player $A$ erases two numbers $x$ and $y$ from the blackboard, and then player $B$ writes one of the numbers $x+y$ and $|x-y|$ on the blackboard. The game terminates as soon as, at the end of some round, one of the following holds: $(1)$ one of the numbers on the blackboard is larger than the sum of all other numbers; $(2)$ there are only zeros on the blackboard. Player $B$ has to pay to player $A$ an amount in reais equivalent to the quantity of numbers left on the blackboard after the game ends. Show that player $A$ can earn at least 8 reais regardless of the moves taken by $B$ Ps.: Easier version of ISL 2020 C8
For any odd prime $p$ and any integer $n,$ let $d_p (n) \in \{ 0,1, \dots, p-1 \}$ denote the remainder when $n$ is divided by $p.$ We say that $(a_0, a_1, a_2, \dots)$ is a p-sequence, if $a_0$ is a positive integer coprime to $p,$ and $a_{n+1} =a_n + d_p (a_n)$ for $n \geqslant 0.$ (a) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_n >b_n$ for infinitely many $n,$ and $b_n > a_n$ for infinitely many $n?$ (b) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_0 <b_0,$ but $a_n >b_n$ for all $n \geqslant 1?$ United Kingdom
Let $P$ be a point on the circumcircle of acute triangle $ABC$. Let $D,E,F$ be the reflections of $P$ in the $A$-midline, $B$-midline, and $C$-midline. Let $\omega$ be the circumcircle of the triangle formed by the perpendicular bisectors of $AD, BE, CF$. Show that the circumcircles of $\triangle ADP, \triangle BEP, \triangle CFP,$ and $\omega$ share a common point.
June 15th, 2021 - Test 2 Day 2
Version 1. Let $n$ be a positive integer, and set $N=2^{n}$. Determine the smallest real number $a_{n}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x . \]Version 2. For every positive integer $N$, determine the smallest real number $b_{N}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x . \]
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other. $\emph{Slovakia}$
Let $\mathcal{S}$ be a set consisting of $n \ge 3$ positive integers, none of which is a sum of two other distinct members of $\mathcal{S}$. Prove that the elements of $\mathcal{S}$ may be ordered as $a_1, a_2, \dots, a_n$ so that $a_i$ does not divide $a_{i - 1} + a_{i + 1}$ for all $i = 2, 3, \dots, n - 1$.
September 14th, 2021 - IberoAmerican Test - Test 3
Let $p>10$ be a prime. Prove that there is positive integers $m,n$ with $m+n<p$ such that $p$ divides $5^m7^n -1$
There are $100$ books in a row, numbered from $1$ to $100$ in some order. An operation is choose three books and reorder in any order between them(the others $97$ books stay at the same place). Denote that a book is in correct position if the book $i$ is in the position $i$. Determine the least integer $m$ such that, for any initial configuration, we can realize $m$ operations and all the books will be in the correct position.
Let $ABC$ be an acute triangle with $AC>CB$ and let $M$ be the midpoint of side $AB$. Denote by $Q$ the midpoint of the big arc $AB$ which cointais $C$ and by $B_1$ the point inside $AC$ such that $BC=CB_1$. $B_1Q$ touches $BC$ in $E$ and $K$ is the intersection of $(BB_1M)$ and $(ABC)$. Prove that $KC$ bissects $B_1E$.
Find all positive integers $n$ with the folowing property: for all triples ($a$,$b$,$c$) of positive real there is a triple of non negative integers ($l$,$j$,$k$) such that $an^k$, $bn^j$ and $cn^l$ are sides of a non degenate triangle