2017 Brazil Team Selection Test

February 18th, 2017 - Test 1

1

The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?

2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

3

Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\]Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.

4

Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that \[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]

APMO 2017 - Test 2

1

We call a $5$-tuple of integers arrangeable if its elements can be labeled $a, b, c, d, e$ in some order so that $a-b+c-d+e=29$. Determine all $2017$-tuples of integers $n_1, n_2, . . . , n_{2017}$ such that if we place them in a circle in clockwise order, then any $5$-tuple of numbers in consecutive positions on the circle is arrangeable. Warut Suksompong, Thailand

2

Let $ABC$ be a triangle with $AB < AC$. Let $D$ be the intersection point of the internal bisector of angle $BAC$ and the circumcircle of $ABC$. Let $Z$ be the intersection point of the perpendicular bisector of $AC$ with the external bisector of angle $\angle{BAC}$. Prove that the midpoint of the segment $AB$ lies on the circumcircle of triangle $ADZ$. Olimpiada de Matemáticas, Nicaragua

3

Let $A(n)$ denote the number of sequences $a_1\ge a_2\ge\cdots{}\ge a_k$ of positive integers for which $a_1+\cdots{}+a_k = n$ and each $a_i +1$ is a power of two $(i = 1,2,\cdots{},k)$. Let $B(n)$ denote the number of sequences $b_1\ge b_2\ge \cdots{}\ge b_m$ of positive integers for which $b_1+\cdots{}+b_m =n$ and each inequality $b_j\ge 2b_{j+1}$ holds $(j=1,2,\cdots{}, m-1)$. Prove that $A(n) = B(n)$ for every positive integer $n$. Senior Problems Committee of the Australian Mathematical Olympiad Committee

4

Call a rational number $r$ powerful if $r$ can be expressed in the form $\dfrac{p^k}{q}$ for some relatively prime positive integers $p, q$ and some integer $k >1$. Let $a, b, c$ be positive rational numbers such that $abc = 1$. Suppose there exist positive integers $x, y, z$ such that $a^x + b^y + c^z$ is an integer. Prove that $a, b, c$ are all powerful. Jeck Lim, Singapore

5

Let $n$ be a positive integer. A pair of $n$-tuples $(a_1,\cdots{}, a_n)$ and $(b_1,\cdots{}, b_n)$ with integer entries is called an exquisite pair if $$|a_1b_1+\cdots{}+a_nb_n|\le 1.$$Determine the maximum number of distinct $n$-tuples with integer entries such that any two of them form an exquisite pair. Pakawut Jiradilok and Warut Suksompong, Thailand

April 1st, 2017 - Test 3

1

Consider fractions $\frac{a}{b}$ where $a$ and $b$ are positive integers. (a) Prove that for every positive integer $n$, there exists such a fraction $\frac{a}{b}$ such that $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}+1$. (b) Show that there are infinitely many positive integers $n$ such that no such fraction $\frac{a}{b}$ satisfies $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}$.

2

Let $n, m, k$ and $l$ be positive integers with $n \neq 1$ such that $n^k + mn^l + 1$ divides $n^{k+l} - 1$. Prove that $m = 1$ and $l = 2k$; or $l|k$ and $m = \frac{n^{k-l}-1}{n^l-1}$.

3

Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.

4

Let $n$ be a positive integer. Determine the smallest positive integer $k$ with the following property: it is possible to mark $k$ cells on a $2n \times 2n$ board so that there exists a unique partition of the board into $1 \times 2$ and $2 \times 1$ dominoes, none of which contain two marked cells.

April 22nd, 2017 - Test 4

1

Let $n$ be a positive integer relatively prime to $6$. We paint the vertices of a regular $n$-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

2

Let $\tau(n)$ be the number of positive divisors of $n$. Let $\tau_1(n)$ be the number of positive divisors of $n$ which have remainders $1$ when divided by $3$. Find all positive integral values of the fraction $\frac{\tau(10n)}{\tau_1(10n)}$.

3

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. Proposed by Evan Chen, Taiwan

4

Find all functions $f:(0,\infty)\rightarrow (0,\infty)$ such that for any $x,y\in (0,\infty)$, $$xf(x^2)f(f(y)) + f(yf(x)) = f(xy) \left(f(f(x^2)) + f(f(y^2))\right).$$